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Abstract
Approximately a third of the Programme for International Student Assessment (PISA) items in the
core domains (mathematics, reading, and science) are constructed response and require human cod-
ing. This process is time consuming, expensive, and prone to error. The shift in PISA 2015 from
paper- to computer-based assessment digitized all responses and associated coding, providing oppor-
tunities to introduce technology and analytical methods to improve data processing and analyses in
future cycles. The current study explains the framework and approach for improving the accuracy
and efficiency of the coding process in constructed-response items for future PISA cycles. Using the
frequency distributions, consistencies of responses in coding categories, analysis of coder agreement,
and graphic representations, we investigated the efficiency of the proposed machine-supported cod-
ing system for all human-coded items across multiple countries using PISA 2015 data and demon-
strate how the proposed system was implemented in the PISA 2018 field trial.
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The move toward computer-based assessment (CBA) holds out promise for significant
improvements in data quality, leading to greater precision and increased validity (e.g., von
Davier, Gonzalez, Kirsch, & Yamamoto, 2012). CBA allows for capturing responses di-
rectly into the system for both multiple-choice and constructed-response items. It provides
the possibility of automatic scoring for both response types – using scoring keys for mul-
tiple choice and machine scoring for constructed responses.
Human coding of constructed responses is time consuming, expensive, and prone to error
due to a lack of consistency among human coders. Such coding tasks become burdensome,
considering multilingual environments in an international large-scale assessment, such as
the Programme for International Student Assessment (PISA). The PISA, given triennially,
is one of the largest internationally standardized assessments and is aimed at evaluating
education systems worldwide by testing the skills and knowledge of 15-year-old students.
In PISA 2018, students representing more than 80 economies in almost 120 languages
(including 116 languages in CBA) will participate, with a focus on assessing their capacity
to demonstrate preparedness in various domains, particularly reading, mathematics, and
science. The core (or major) domain rotates by cycle. In the PISA 2018 cycle, the major
domain is reading and will be administered to all students, while the minor domains of
science and mathematics will be administered to about a third of the students each. Nearly
a third of the items in mathematics and science and about a half in reading domains in
PISA 2015 are constructed response and require human coding.3

For the first time, PISA 2015 delivered the assessments of all subjects via computer. The
shift in PISA 2015 from paper- to CBA digitized all responses and associated coding,
providing opportunities to introduce technology and analytical methods to improve data
processing and analyses in future cycles.
The current study explains the framework and approach for improving the accuracy and
efficiency of the coding process in constructed-response items for future PISA cycles.
Specifically, the research questions focus on (1) what is the commonality of correct and
incorrect responses by items across country/languages, (2) whether and how much we can
take advantages from the computer-supported coding given the small number of unique
responses generally found among correct responses, and (3) whether the commonality of
responses is consistent across cycles and country/languages. Based on these research find-
ings, we aim at building up a system that could reduce the number of items that have to be
coded by human coders. In this paper, we define coding as a process that initially catego-
rizes written responses into discrete classes, thus facilitating scoring in a later step. Using
the frequency distributions, consistencies of responses in coding categories, analysis of
coder agreement, and graphic representations, we investigated the efficiency of the pro-
posed machine-supported coding system (MSCS) for all human-coded items across mul-
tiple countries using PISA 2015 data and demonstrate how the proposed system was im-
plemented in the PISA 2018 field trial. The ability to collect students’ raw responses and

3There are two kinds of coding methods for constructed-response items in PISA, computer- and human-
coded. Items with numeric responses (i.e., only numbers, commas, periods, dashes, and back slashes can
be entered) and responses involving choices from a drop-down menu or selecting rows of data are coded
via computer. All others, typically answered by inputting text-based entries, are coded by human raters.
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potentially automate the coding of more complex response types – such as extended, con-
structed answers–is expected to dramatically enhance PISA’s overall data quality and has
proved effective in its first implementation in the PISA 2018 field trial.

Motivation of developing a machine-supported coding system

Bennett (2011) defined automated scoring as “a large collection of grading approaches
that differ dramatically depending upon the constructed-response task being posed and the
expected answer.” He categorized two general classes of assessment tasks for which auto-
mated scoring could be used. The first entails constructed-response tasks that can be
graded using exact-matching techniques. For these problems, the scoring challenge is rel-
atively trivial: The correct/incorrect answer(s) are known in advance and can be used to
evaluate the quality of the student’s response.
The second general class consists of problems for which the responses are too complex to
be graded through the exact-matching approach. Automated scoring of complex responses
is generally accomplished via a scoring “model.” The model extracts features from the
student response and uses those features to generate a score, such as the c-rater® (Leacock
& Chodorow, 2003) and e-rater® scoring engines (Burstein, 2003). Tasks may be scored
as right or wrong, but in many cases they also can be graded on a partial-credit scale ac-
cording to a scoring rubric. Such an automated scoring model is typically developed based
on one language (e.g., English) to derive accurate scoring in the specific language envi-
ronment. Because of language diversity in spelling, grammar, wording, and so on, it is
very challenging to generalize one single language model to other languages. Given con-
cerns about the multilingual environments in international large-scale assessments, the au-
tomated scoring model categorized in the second class by Bennett is less helpful in the
current study.
The MSCS typically follows the first class of automated scoring, that is, graded responses
with exact-matching techniques based on historical data. The goal of the current system is
to avoid repeated coding of the exact same response string by classifying constructed re-
sponses into equivalent response classes. For response classes with verified coding, the
coding associated with the response class can then be applied to future observations of the
identical response, namely, responses from the same equivalent response class.
This approach parallels automated scoring in the sense that a scoring model is first trained
on existing data and then applied to future data. However, unlike commonly used auto-
mated scoring processes that generally involve algorithms, the proposed method relies on
human coding and exact matching of previously established classes of responses with
newly observed student responses. That means no computer-based classifications or
threshold approach are needed; only exactly matching responses receive a coding as pre-
viously established based on human coders. Such an exact matching rule could be easily
applied to any language in multilingual-based international large-scale assessments such
as PISA.
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Human coding system in PISA

Due to a lack of consistency among human coders, human coding sometimes results in
low coding reliability. In PISA 2015, typically, the number of raw responses to be coded
in a single country per language was around 180,000. Assuming 1,000 responses can be
coded by a single human coder per day, it would take 180 person days to complete the
task. The challenge is expected to be greater in PISA 2018 for two reasons: The major
domain will be reading, which is more heavily text-based and utilizes a higher proportion
of constructed-response items, and more countries are expected to participate. In the PISA
2018 field trial, an average of eight human coders was assigned per country/language in
reading for the standard sample size of 1,500 respondents per country. The number of
human coders will be increased in the main survey with a bigger student sample size of
over 6,000 per country.
Coder reliability in PISA was evaluated at the within- and cross-country levels for all
items, which was enabled by a coding design that involved multiple coding, or coding of
the same response by different individuals. In general, each country needed to randomly
select 100 student responses per human-coded item for multiple coding. The rest of the
student responses were evenly split among multiple human coders for single coding. Mul-
tiple coding of all student responses in an international large-scale assessment like PISA
is labor intensive and costly. The inconsistency of coders varied across items and coun-
tries. In PISA 2015, in terms of the student responses, 96 % of the CBA countries coded
every item with proportion agreement higher than 85 % in mathematics, new science
items, and financial literacy. More than 97 % of CBA countries had five or fewer items
with proportion agreement lower than 85 % in the reading and trend science (items from
previous cycles) domains; for further detail, see the PISA 2015 Technical Report (Organ-
isation for Economic Co-operation and Development, 2017). For most CBA countries, the
standard inter-rater reliability of Cohen’s kappa agreement was above 0.9 for all domains
(0.97 in mathematics, 0.90 in reading, 0.90 in new science, 0.93 in trend science, and 0.92
in financial literacy).
The following sections describe how the MSCS was developed and implemented as well
as its overall performance in the first actual implementation in the PISA 2018 field trial.
We first introduce the development of the MSCS, followed by a pilot study to illustrate its
function and performance using the responses collected in PISA 2015 (Yamamoto, He,
Shin, & von Davier, 2017). Next, the implementation of the MSCS in PISA 2018 field
trial is presented with a focus on the development of a coded unique response (CUR) pool.
An overview of the performance of the MSCS in PISA 2018 field trial is also reported.
Finally, we discuss how to expand the CUR pool and further enhance the reliability and
efficiency of the MSCS for future PISA cycles.

Development of a machine-supported coding system

The idea behind the MSCS is to capitalize on the regularity of students’ raw responses.
Here, “regularity” refers to the extent to which a small number of “unique” responses
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represent all students’ responses on constructed-response items.4 For example, high regu-
larity in correct responses means that a relatively small number of unique correct responses
represents a large number of correct responses for a given item. In other words, variability
among all correct responses for an item is small. In contrast, there can be numerous incor-
rect responses for a constructed-response item and are easily recognizable–for example,
any number other than the correct number. Identical responses (one unique response)
should receive the same code when observed a second time, meaning human coding can
be replaced by machine coding in such a situation, reducing repetitive coding work per-
formed by humans. Further, machine coding can reduce inaccuracy caused by human
coder error (e.g., not understanding the coding rubric, fatigue, not careful enough, etc.) by
assigning “verified” codes established from the historic data (i.e., CUR pool). If the veri-
fied correct and incorrect codes could be assigned automatically for identical responses,
coding the constructed-response items would be much more efficient and accurate as well
as less resource intensive for each country.
Raw responses can generally be categorized into two types: (a) responses with verified
coding (including nonresponse) and (b) unique responses that require human judgment. In
the implementation, response type (a) can be automatically coded based on the CUR pool,
while only type (b) needs to be coded by human coders. For instance, if a constructed-
response item has 500 identical responses, the human coder should have to code only once
for the unique response. The MSCS can code the other 499 instances, resulting in a 99.8
% workload reduction. However, the proportion of workload reduction is item dependent
as it depends on the level of response complexity and the consistency of codes given to
that unique response. For instance, straightforward responses to short constructed-re-
sponse items (such as “3 meters” as the response to a question about finding a distance
between two points) would more likely result in more consistent codes and, hence, lead to
a larger workload reduction than moderately complex responses (such as explanations of
how a drug functions).
As Figure 1 shown, the workflow of the MSCS can be divided into two phases: (a) create
the CUR pool by identifying the consistently coded frequent responses, and (b) comparing
the new responses against the CUR list. In the first phase, historical data – for example,
the coded raw responses from the PISA 2015 main survey – are analyzed, and a simple
algorithm sorts raw responses by code categories (e.g., 0, 1, 2, 7, and 9). If there is a com-
mon code that applies to the sets of identical responses and is exclusive (i.e., if the same
response exists in only the “correct” category, but not in the “incorrect” category), a CUR
pool can be generated based on the equivalent code and the code is assumed to be verified.

4For example, “30m”, “30 m”, “30 meters” were treated as three “unique” responses, because they are
different in terms of spaces or abbreviation used in the raw responses. No preprocessing (e.g., removing
spaces) has been conducted for the PISA 2018 field trial.
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Figure 1:
Machine-supported coding system workflow for constructed-response items

In the application, or the second phase, machine-supported coding is applied to new un-
coded responses: If a new respondent’s answer to a constructed-response item is found in
the CUR pool for that item in the given country/language group for the PISA 2018 field
trial, the stored response code is directly applied to the new respondent’s answer. The
current MSCS system uses exact response match (including space, spelling mistake, punc-
tuation, etc.) with the CUR pool. Nonresponses such as blanks can be assigned the appro-
priate nonresponse code. Only those responses that cannot be matched to an identical re-
sponse stored in the CUR pool are assigned to (multiple) human coders.

Pilot study: Machine-supported coding system in PISA 2015

The potential gain of the MSCS was tested using 13 items from the reading domain in
PISA 2015 across seven country/language groups – Australia (English), B-S-J-G (China)
(Chinese)5, France (French), Germany (German), Japan (Japanese), Korea (Korean), and
the Netherlands (Dutch) – in a pilot study (Yamamoto et al., 2017). The country/language
group set was selected with a diversity in languages and culture: Both alphabetic-based
languages (European languages such as English, French, German, and Dutch) and charac-
ter-based languages (Asian languages such as Chinese, Japanese, and Korean) were repre-
sented. In accordance with the policies regarding confidentiality and item disclosure, we
anonymized all the countries’ names herewith after, instead, used “Country A to G” to

5In PISA 2015, only four provinces in China participated the assessment, including Beijing, Shanghai,
Jiangsu and Guangdong. We abbreviated this group as “B-S-J-G (China)” to keep consistent with the PISA
2015 technical report.
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represent the seven countries in a random order. Also, only “altered” responses were used
here to illustrate how regularity levels of responses were defined.
The sample items were selected based on a wide range of regularities of responses. The
level of regularities was defined as the ratio between total responses and unique responses
per item. Three levels of regularities (i.e., high, medium, and low) were used in the current
study. The ratio for an item with a high level of regularity responses was typically more
than 20 to 1, meaning one unique response on average represented more than 20 responses
in this item. The ratio threshold decreases to 2 to 1 for items withmoderate-level regularity
responses. When the ratio is lower than 2 to 1, it indicates the item with a low level of
regularity responses.

High level of regularities

Table 1 lists the frequencies of identical response classes for an example item that could
be classified as a large-gain machine-coding item with high level of regularities. This table
provides frequencies separately by score given: full or no credit. Frequencies of nonre-
sponses are also listed in the rightmost column. Using the sample in Country A, there were
1,838 raw responses in this item, with only 50 unique responses were found among them.
This implies that human coders would only have been required to code 50 unique re-
sponses, or 3 %, for the identical responses to receive the same credit.
For this simple constructed-response item, the answer should be “30” or “30 minutes,” and
responses including numbers other than “30” should have been coded as incorrect. Among
all responses, 1,467 students responded correctly with “30,” and the second-most fre-
quently observed unique response was “30 minutes,” which came from 23 students.
Among responses that received no credit, the most frequently observed were “10” and “5,”
each of which was observed from six students. Also, we detected a miscode (italicized in
the table) from a human coder who gave the wrong score: one student who answered “12”
received full credit even though he or she should have received no credit. This example
illustrates how our proposed approach can be utilized to improve coding accuracy by au-
tomatically assigning no credit to clearly wrong responses. Finally, 252 students’ re-
sponses (14 %) were nonresponses. One incorrect response received a missing code from
a human coder although it should have been assigned no credit.
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Table 1:
Large-Gain Machine-Coding Item with High Level of Regularities (Country A) (Item 3)

Response Frequencies
(full credit)

Frequencies
(no credit)

Frequencies
(missing)

30 1,467 0 0
30 minutes 23 0 0
30mins 7 0 0

…
10 0 6 0
5 0 6 0
12 11 3 0

…
(No response) 0 0 252

Total 1,509 76 253
Note.1 Italics here indicates a miscode. “Altered” responses were shown in the table to illus-
trate the high level of regularities of responses.

Figure 2 illustrates the visual representation of this item across seven country/language
groups using bar plots. Each bar plot in Figure 2 shows the cumulative proportion of
unique responses by each country (vertical axis), with the frequency of unique responses
sorted by three categories on the horizontal axis from left to right: full-credited unique
responses, no credit, and nonresponses.
At the bottom right corner of the figure, we present a table showing the number of total
responses (T) (i.e., the number of respondents) and the number of unique responses (U)
(i.e., the sum of unique responses in correct and incorrect groups) in the items. The fol-
lowing row “proportion of potential duplicate responses” exhibits the maximum expecta-
tion (i.e., upper boundary) that the duplicate responses can be removed from human coding
workload if a machine coding engine is applied. The percentage of reduction is calculated
as . Note that the additional workload of using multiple human raters (for examining
coders’ reliability) was not considered in the calculation. In this high-level-regularity-re-
sponse example, the proportion of potential duplicate responses is very high if the MSCS
is used – a range of 94-98 % across seven countries. The last two rows present the number
of unique responses that satisfy the rules to be included in the CUR pool, and the propor-
tion of potential duplicate responses that can be matched in the CUR, which could be re-
garded as a lower boundary as the minimum expectation from the MSCS. The major rules
applied to building up the CUR pool will be addressed in more details in the next section.
The nonresponse and unique responses with frequency not less than five times in one and
only one coding category were included in the CUR pool. It is noticeable that in such a
high-level-regularity-response item, the CUR unique responses are very powerful to save
a large proportion of duplicate coding tasks from human coders. Especially in Country G,
90 % duplicate coding tasks could be saved by only two unique responses.
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As listed in Table 1, for this item in the Country A, the most frequently observed response
was given in 1,467 full-credited responses (80 %). That is the starting point in Figure 2
from the first bar. It is notable that the cumulative proportion rises slowly after the first
bar, implying there are few additional regularities for the rest of the unique responses.
Regularities among no-credited responses are very small, making it hard to see the thresh-
old that distinguishes full-credited and no-credited groups. Note that nonresponses consti-
tute one category of the unique responses, with the rightmost bar indicating the nonre-
sponses as listed in Table 1. There are a substantial number of nonresponses, which is 252
for this country, and is visible with the large jump in cumulative frequencies shown by the
rightmost bar. Note that when the sorted unique responses are accumulated, the bar at the
rightmost reaches the total number of raw responses, which is 1,838 in this case. The cu-
mulative distributions follow similar patterns across countries, meaning there is not a large
language effect in this item. The efficiency benefits from the MSCS are consistent across
countries for this item.

Figure 2:
Large-gain machine-coding example item with high level of regularities. *Frequency of
unique responses on horizontal axis sorted left to right by full credit, no credit, and nonre-

sponse. Australia (English), B-S-J-G (China) (Chinese), Germany (German), France (French),
Japan (Japanese), Korea (Korean), and the Netherlands (Dutch) were represented by Country

A to G in a random order.
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Medium level of regularities

Following a similar structure, we presented an example item with a medium level of reg-
ularities response in Table 2. In Country A, there were 1,815 raw responses in total, with
648 unique responses harvested, suggesting only 36 % responses needed to be coded by
human coders.
The correct answer for this particular item should be “Earth Road WF” regardless of the
capitalization of the letters. Among all responses, 529 students responded correctly with
the same exact response as “Earth Road WF,” and the second-most frequently observed
unique response was “earth road WF” from 76. Moreover, we detected one miscode (ital-
icized in Table 3) from a human coder who gave no credit when the correct answer of
“Earth Road WF” was given. Unlike the item above that showed small regularities among
no-credited unique responses, many students provided exactly the same incorrect re-
sponses.

Table 2:
Moderate-Gain Machine-Coding Item with Medium Level of Regularities (Country A)

(Item 2)

Response Frequencies
(full credit)

Frequencies
(no credit)

Frequencies
(missing)

Earth Road WF 529 11 0
earth road WF 76 0 0
earth road wf 45 0 0

…
ABC Space Free 0 123 0
ABC's Space Free 0 39 0
ABC's space free 0 16 0

…
(No response) 0 0 145

Total 809 861 145
Note. 1Italics here indicates a miscode. “Altered” responses were shown in the table to illus-
trate the high level of regularities of responses.
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Figure 3:

Moderate-gain machine-coding item with medium level of regularities. *Frequency of unique
responses on horizontal axis sorted left to right by full credit, no credit, and nonresponse.
Australia (English), B-S-J-G (China) (Chinese), Germany (German), France (French), Japan
(Japanese), Korea (Korean), the Netherlands (Dutch) were represented by Country A to G in a

random order.

Consistent with Figure 2, similar patterns of unique response distributions were found in
the item with medium level of regularity responses as illustrated in Figure 3. The most
frequently observed response came from 529 (29 %) full-credited responses, which is the
starting point in the cumulative proportion axis. The bar heights are slightly increasing for
the rest of the full-credited unique responses but followed by a clear jump when the no-
credit unique responses joined. The final jump reflected in the right-hand bar indicates a
substantial number of nonresponses. The proportion of items not needing human coding is
within a range of 39-80 % across countries if the MSCS were to be applied. It was also
interesting to find that compared with the high-level-regularity-response item in Figure 2,
the number of unique responses included in the CUR was increased in this medium-level-
regularity-response item. However, the proportion of potential duplicate responses that
matched with the CUR pool was lower across all the country/language groups, meaning
the CUR unique responses are a bit weaker compared with the previous example item on
account of a relatively lower frequency of each CUR unique response.
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Low level of regularities

Following the same structure, Table 3 lists the frequencies of unique responses for the last
example item that can be classified as a small-gain machine-coding item with low level of
regularities. For this item, there were 1,782 raw responses in total from Country A, and
1,274 unique responses were harvested out of all raw responses. Although the number of
unique responses seems quite large compared to the two items above, we could still avoid
the need to manually score 508 raw responses. Note that among the reduced 508 raw re-
sponses, 504 responses (99.2 %) were nonresponses, as listed in Table 3.
For this constructed-response item, students needed to provide a reasonable answer in a
sentence; an insufficient or vague response should have been coded as incorrect. Among
all responses, the first three full-credited unique responses came from only two students,
respectively. Regularities in raw responses were rarely observed among no-credited re-
sponses. The largest frequencies of unique responses, either in the full-credited or no-cred-
ited response group, were just two. However, over a quarter of students, or 504 (28.3 % of
the total), did not produce a response. Although this item contained only a low level of
regularities, a considerable number of nonresponses could have been automatically coded.
Analogous to illustrations in figures 2 and 3, we found similar patterns of cumulative dis-
tribution in the example item with low level of regularity responses in Figure 4. In Country
A, the most frequently observed response came from three full-credited responses. A
straight diagonal line is observed until it reaches the rightmost bar, suggesting almost all
responses were unique. A high jump in the rightmost bar is spotted for a high nonresponse
rate in this item. The proportion of saved workload would be relatively low – a range of
5-29 % if the MSCS were applied.

Table 3:
Small-Gain Machine-Coding Item with Low Level of Regularities (Country A) (Item 11)

Response Frequencies
(full credit)

Frequencies
(no credit)

Frequencies
(missing)

It states what the paper is going to be about. 2 11 0
it tells you what the paper is about 2 0 0
its telling you what the paper is about 2 0 0
…
don give up 0 2 0
Idk 0 2 0
? 0 1 0
…
(No response) 0 0 504
Total 1080 198 504
Note. 1Italics here indicates a miscode. “Altered” responses were shown in the table to illustrate the
high level of regularities of responses.
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For items with a low level of regularities, the small gains are mainly contributed by non-
responses rather than identical raw responses, implying that the potential decrease in work-
load from a small-gain machine-coding item largely depends on the ratio of nonresponses.
For instance, there was a high proportion of nonresponse (over 20 %) in Country A, as
shown in the highest bar to the right end in the Country A plot, while there was a relatively
low missing rate (around 5 %) for Country G, suggesting Country A would benefit more
from the MSCS than the Country G merely by nonresponse rate. We also noticed that the
unique responses that could be included into the CUR pool became rare in the low-level-
regularity-response item. Due to the extremely low frequency of each unique response, the
removal of duplicate responses could not be benefited much from the CUR pool.
To sum up, in this pilot study, the sample item with the most instances of repeated raw
responses resulted in a maximum expectation of 94-98 %workload reduction across coun-
try/language groups, whereas the sample item with the fewest repeated responses reduced
coding workload by as little as 5-29 %. More importantly, when items were categorized
into three groups in terms of regularities – high, medium, and low – there was a fairly
consistent pattern in item categorization across many country/language groups. These re-
sults indicate that it is feasible to increase the usage of MSCS for PISA, which has more
than 80 countries and 100 language versions. The results from the pilot study also suggest
that it is possible to use the MSCS for the completely new constructed-response items
(without any historical data) by having empty responses as one unique response. More
specifically, an algorithm can evaluate whether a new response was observed in the CUR,
even if the CUR is initially a nonresponse. Any new, unique response not in the CUR will
be a new one and be presented to a human coder. If multiple coders all agree in terms of
the assigned response (typically more than two) for any such response, it is possible to add
the verified unique response and its associated code to the CUR for the future cycle as a
standard step.
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Figure 4:

Small-gain machine-coding item with low level of regularities. *Frequency of unique re-
sponses on horizontal axis sorted left to right by full credit, no credit, and nonresponse. Aus-
tralia (English), B-S-J-G (China) (Chinese), Germany (German), France (French), Japan (Jap-
anese), Korea (Korean), the Netherlands (Dutch) were represented by Country A to G in a

random order.

Implementation of machine-supported coding system in PISA
2018 field trial

Preparation of MSCS for PISA 2018 field trial

In preparation for the PISA 2018 field trial, the MSCS was applied to all constructed-
response items across all domains based on extracted data from the PISA 2015 main sur-
vey. It showed that across all items and country/language groups, the percentages of iden-
tical responses among all responses constituted approximately 40 % in mathematics, 28 %
in reading, 22 % in science, and 18 % in financial literacy, meaning the human workload
could potentially be reduced by those amounts. Raw responses from a total of 146 items
(21 items from math, 58 from science, 51 from reading, and 16 from financial literacy)
across 59 countries were used to prepare the PISA 2018 field trial CUR pool. In the CUR
pool, each unique response was associated with a verified code (i.e., 0, 1, 2, 9, etc.), which
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was consistent with the coding guidelines from PISA 2015. The CUR pool was built to be
country/language-specific; within the CUR pool, coded unique responses were stored sep-
arately by domains and language groups.
Two major rules were used when the unique responses were extracted and entered into the
CUR pool. First, the response to an item in a specific country/language group should occur
at least five times in one coding category. To ensure that the CUR pool contained accurate
and verified codes for each unique response, only unique responses with identical and
exclusive codes were included. The second rule was set for the nonresponse category. An
empty response was added to each item regardless of the frequency of nonresponses. This
approach ensured at least one unique raw response (i.e., empty response) could be found
in each constructed-response item in the CUR pool, meaning the nonresponse could be
directly filtered and coded by the machine rather than assigned to human coders.
The PISA 2015 data was used to build and verify all the coded unique responses within
the current CUR pool. The new raw responses collected in the PISA 2018 field trial were
added into the MSCS and compared with the verified CUR on an item-by-item basis for
each country/language group. Once a new response was found with an exact match to an
identical CUR to a specific item, the stored code in the CUR pool was automatically ap-
plied to this response. During the PISA 2018 field trial, the responses that could not be
matched with the existing CUR pool as well as the responses collected for the new items
were assigned to human coders. These items will be examined after the field trial to decide
whether they can be added into the CUR pool. By repeating this process, the CUR pool
can be expanded, further verified, and prepared for the PISA 2018 main survey and future
cycles.

Performance of MSCS in PISA 2018 field trial

The PISA 2018 field trial used the newly developedMSCS, based on PISA 2015 data, for
the first time as part of the coding process for the constructed-response items. The system
was applied for all country/languages groups that participated in the PISA 2018 field trial,
except for some country/language groups that are either new to PISA or switching from
paper- to computer-based assessment. Due to having no historical data in the CUR pool,
they were not eligible for this system.
The performance of the MSCS was evaluated with respect to the efficiency of the system
and its capability to monitor and improve coding accuracy. As to efficiency, various types
of automatically coded responses were summarized across items and country/language
groups. Before the system existed, of course, all student responses, including empty re-
sponses, were assigned to human coders without exception. Thus, this evaluation revealed
the extent to which the burden of human coding in the CBA was decreased in the 2018
field trial. As for the capability to monitor the accuracy of human coding, consistency of
human-coded responses was examined relating codes to students’ raw responses.
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Table 4:
Efficiency of Machine-Supported Coding System Implemented in Constructed-Response

Items in PISA 2018 Field Trial

Machine-coded Human-coded
Total Missing Valid

Mathematics 34 % 17 % 17 % 66 %
New Reading 16 % 11 % 5 % 84 %
Trend Reading 21 % 10 % 11 % 79 %
Science 25 % 13 % 12 % 75 %
Financial Literacy 13 % 12 % 1 % 87 %

Table 4 summarizes the average efficiency of the MSCS across all items and country/lan-
guage groups in each domain. On average, the proportion of items not needing human
coding was reduced for the 2018 field trial from a low of approximately 13 % in financial
literacy to a high of 34 % in mathematics. To clarify the efficiency given by different
sources, we calculated the empty (missing) responses and valid responses separately. On
average, approximately 10-17 % of the total responses in trend reading and mathematics,
respectively, were empty responses and automatically coded by the system. The MSCS
was also efficient for new items in reading, where no historic data were available, reducing
the proportion of items that used to be coded by human coders by 11 % on average just by
excluding blank responses. For the valid responses, approximately 0.8 % in financial lit-
eracy to 17 % inmathematics efficiencywas gained. For new reading items, the proportion
of items that used to be coded by human coders was reduced by an additional 5 % on
average by incorporating obviously incorrect responses for some item types (e.g., re-
sponses where a student selected a radio button option but typed no text in the text box
were coded as “incorrect”). The proportions of the human-coded responses are shown in
the last column. These values correspond to the proportions of responses where the current
system could not find an exact match to the raw responses in the current CUR pool that
was built based on the 2015 main survey. New items (especially in the reading and finan-
cial literacy domains in the 2018 field trial) and new countries that were not included in
the PISA 2015 do not have a CUR pool due to the absence of historical data, so no effi-
ciency could be gained. It is also the main reason that a gap was observed between the
theoretical maximum gains in efficiency expected based on PISA 2015 and actual imple-
mentation in the 2018 field trial. On average, approximately 66 % for mathematics to 87
% for financial literacy of the responses had to be scored by human coders in the 2018
field trial after the MSCS was implemented.
As the cycle of assessments proceeds, the CUR pool is expected to grow and the proportion
needing human coding is expected to decrease as responses from the 2018 field trial data
are added to the existing CUR pool from 2015 main survey data. Furthermore, considering
the major domain in PISA 2015 was science while in PISA 2018 it will be a different
domain (reading), more constructed-response items are expected to be used in PISA 2018,
which would enhance the harvest of the CUR pool even further.
Accurate and reliable coding of item responses, especially for human-coded constructed-
response items, is a key component of quality control and is a necessary step for ensuring
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valid and comparable assessment results. Before the introduction of CBA, monitoring the
accuracy of human-coded responses was resource intensive. CBA enables the capture of
students’ raw responses and associating these responses to the corresponding codes given
by human coders as well as the CUR pool for machine coding. Because the MSCS system
decreased the number of human-coded responses by excluding empty responses and ma-
chine coding others, more responses could be assigned to multiple coding in the 2018 field
trial. This allowed for better monitoring of coding accuracy, not only by comparing results
from multiple human coders but by evaluating the assignment of codes to students’ raw
responses. In addition, increasing the number of verified codes for more complex re-
sponses that were validated through multiple coding to the CUR pool further improved the
validity of the codes.

Discussion and Conclusion

This paper describes the development and implementation of a machine-supported coding
system for constructed-response items in multilingual-based international large-scale as-
sessments such as PISA. There are two major reasons why there is room for improvement
in the current human coding process: (a) a lack of consistency among human coder scores,
possibly due to lack of understanding of coding rubrics, or coder training, and (b) variation
in coding reliability across items and countries. The shift to CBA made it possible to col-
lect all responses using technology and opened avenues to utilize these machine-recorded
responses in associated coding procedures, thus offering the possibility to introduce anal-
ysis methods to support coding and improve data processing and analyses in future cycles.
The purpose of our research is to develop a computer-supported coding system to improve
the efficiency and accuracy of the coding process for constructed-response items. One im-
portant aspect of this approach is generating a pool of unique responses with pre-assigned
scores (CUR pool), which helps reducing the need for human coding. This is easily
achieved by post-processing the PISA 2015 data in preparation for the 2018 data collection
by extracting unique responses and processing new responses to enhance the existing CUR
pool for each item. Because trend items are typically used over three cycles (i.e., one time
as part of the major domain and twice as part of the minor domain) and PISA implements
a field trial before the main survey, the collection of unique responses for the CUR pool is
expected to be a powerful tool to considerably reduce the amount of human coding while
increasing coding consistency.
To illustrate the function and performance of the MSCS, we conducted a pilot study in
which the MSCS was examined by using 13 example items in the reading domain across
seven countries with different languages used for testing in PISA 2015. Regarding the
accuracy of existing coder data, across seven countries, only a few cases were spotted as
miscodes for easy-to-code items, but more miscodes or inconsistent-coding cases were
observed for difficult-to-code items.
In terms of efficiency of the proposed MSCS, we classified items into three categories: (a)
large-gain machine-supported coding with a high level of regularities, (b) moderate-gain
machine-supported coding with a medium level of regularities, and (c) small-gain



K. Yamamoto, Q. He, H. J. Shin & M. von Davier162

machine-supported coding with a low level of regularities. More specifically, the number
of unique responses out of all raw responses became smaller at different magnitudes: As
it became more straightforward to do machine-supported coding, fewer unique responses
were harvested. It was clearly shown that when high or medium levels of regularities exist
among raw responses, machine-supported coding significantly reduced human coders’
workload (e.g., more than 90 % for the large-gain machine-coding example item). Even
when the number of unique responses was similar to the number of raw responses for
small-gain machine-supported coding items, the proportion of automatically coded nonre-
sponses helped reduce human coders’ workload. This suggests that exclusion of nonre-
sponses can provide time and cost savings for any item. Finally, it is promising that a
consistent pattern for each item was observed across the seven countries we examined.
In addition, our research also provided information on how to revise the coding rubrics
and coder training material based on real responses from students. More importantly, by
calculating the frequencies of unique responses by full- and no-credit codes, we could
identify cases where miscodes were assigned or human coders did not agree sufficiently.
Because all the unique responses are from real responses that students provided during the
test, these inconsistently coded cases can be used as examples in coder training materials
to improve the coding guides and training.
As expected, the application of the newly developed MSCS to the PISA 2018 field trial
significantly reduced the proportion of items that used to be coded by human coders: from
a low of approximately 13 % in financial literacy to a high of about 34 % in mathematics.
Thus, both accuracy as well as efficiency of coding was improved. In addition, the system
has the capacity to monitor coding accuracy by comparing codes from multiple human
coders and assigning these given codes to new students’ raw responses.
While there are apparent benefits from the MSCS, we also note some limitations. First,
the current CUR pool (for the PISA 2018 field trial) has been established based on a data-
driven consistency notion that coherent codes assigned to frequently observed responses
would be accurate. However, there is a challenge in validating the accuracy of codes, par-
ticularly when the unique response is confusing and difficult to agree upon. This means
that unique responses, especially those that were flagged due to low reliability across cod-
ers, are recommended to be coded and validated by master coders by country/language
groups before being added to the CUR pool. It would be of importance in expanding the
CUR pool to improve the efficiency of the MSCS for the future.
Secondly, the current MSCS is built upon specific country/language groups, meaning the
languages are not clustered across countries (i.e., the Canada/English group is treated sep-
arately from US/English even though the same language is used). It would be more effi-
cient to combine theCUR pool by language groups to further enhance the harvest of unique
responses in the language cluster. Further, the proposedMSCS is a basic approach that can
be applied to any language, in which equivalent response classes are based on exact match
only. It is a topic for future research to allow for some fuzziness of the response classes
(e.g., Sukkarieh, von Davier, & Yamamoto, 2012) or to include preprocessing and base
the definition of response classes on strings without white space, punctuation, and capital-
ization (e.g., Manning & Schütze, 1999).
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Thirdly, from the present study, it appears that items with low-level regularities responses
would see very limited reductions of workload from the MSCS. However, this response
group is still of interest, and not just to improve the efficiency of scoring. For example, it
could be studied whether, after controlling for ability, those regularities are similar across
countries, as one might expect. Also, it would be interesting to examine whether more
substantial workload reduction could be obtained if more advanced machine learning and
natural language processing techniques were applied.
Finally, the currentMSCS assigns human coders only if the new responses were not scored
by machine. Hence, direct comparisons between the machine and humans were not avail-
able. To monitor the accuracy of the CUR pool, enabling direct comparison between ma-
chine and human coders can be considered, for instance, in the PISA 2018 main survey.
In conclusion, along with the pilot study and results reported in research report based on
the PISA 2015 main survey, application of the system to PISA 2018 field trial proves the
feasibility of the proposed MSCS and provides evidence for improving accuracy and effi-
ciency of the coding process for constructed-response items. Hence, the implementation
of this system is recommended for the PISA 2018 main survey and beyond. Also, the
MSCS is designed not only for multilingual tests but can easily be adapted to single-lan-
guage tests as well, reducing redundancy wherever duplicate constructed responses are
observed. Moreover, the CUR pool does not have to be static, it can be adaptive within a
duration of coding responses. A CUR pool cumulated from previous response data can be
dynamically updated when the frequency of new unique responses with consistent coding
reaches a certain statistical threshold. Therefore, we believe the MSCS holds promise in a
broad range of applications for automatic coding of constructed responses.
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