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Abstract 
This study presents a case study that applies mixed-effects ordered probit models for the purpose of 
utilizing scores from automated scoring engines (AE) to monitor and provide diagnostic feedback 
to human raters under training. Using the experimental rater training study data, we illustrate a 
statistical approach that can be used for analyzing three types of model-based rater effects – severi-
ty, accuracy, and centrality of each rater. Each of the rater effects is related with model parameters 
and compared for cases (a) when the AE is considered as the gold standard and (b) when the human 
expert (HE) is considered as the gold standard. Results showed that AE and HE scoring approaches 
agreed maximally (100%) in detecting severity. The agreement rate was somewhat lower for cen-
trality (93.1%) and considerably lower for accuracy (66.4%). As a targeted case study, this exami-
nation concludes with practical implications and cautions for rater monitoring based on the AE. 
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Introduction 

Due to the relatively high costs associated with human scoring, interest in applying au-
tomated scoring to supplement or supplant human scoring has increased in recent years, 
and considerable effort has been directed toward researching and improving the automat-
ed scoring process (Attali & Burstein, 2006; Clauser, Kane, & Swanson, 2002; Landauer, 
Laham, & Foltz, 2003; Williamson, Xi, & Breyer, 2012). Little attention has been di-
rected toward whether what we learn from automated scoring can be used to improve the 
human scoring process. In most current applications, automated scoring engines are 
calibrated using data from human scorers, so, clearly, obtaining ratings from humans that 
are the highest quality possible is paramount to the success of these automated scoring 
efforts. Additionally, the general public remains skeptical of the validity of automated 
scoring, so full implementation of automated scoring is increasing slowly. For the fore-
seeable future, human scoring will remain important; therefore, it is essential to continu-
ally improve the quality of human scores while making the scoring process as efficient as 
possible. 
One common concern for those who manage and monitor human scoring projects is how 
to monitor rating quality in real time and over time (Myford & Wolfe, 2009). There are 
many potential procedures for doing this, but one that is used extensively is the admin-
istration of validity papers. These papers are student responses that have been assigned 
consensus scores by expert raters before an operational scoring project. After the raters 
complete their training and begin operational scoring, validity papers are occasionally 
blindly seeded into the raters’ scoring queues, and the scores that raters assign to the 
validity papers are recorded. When a rater has assigned scores to a sufficient number of 
validity papers, the scoring leaders review the scores, and compare them to the consensus 
scores assigned by experts. If large differences are observed between the scores assigned 
by a particular rater and the scores assigned by experts, the scoring leaders may choose 
to provide feedback to that rater and/or take corrective actions.  
This paper describes a study designed to evaluate the possibility of replacing scores from 
human experts (HE) on validity papers with scores assigned by an automated scoring 
engine (AE) using the experimental data consisting of ratings on the texts written by 
middle-school students. Calculating the agreement (either by exact agreement rates or 
Cohen’s Kappa) or correlations between AE and HE has been a popular choice to 
demonstrate the correspondence of AE to the HE4. This correspondence between ob-
served scores is a simple and straightforward way to communicate and might be suffi-
cient to defend the use of AE to replace at least one of the scores from human raters. 
However, this method may not provide diagnostic feedback to the human raters during 
training for the purpose of monitoring. Therefore, rather than directly comparing the 
scores, we focus on the rater monitoring situation and explore multiple aspects of model-
based rater effects. The potential cost savings of implementing a rater monitoring system 
that relies on scores assigned by an automated scoring engine is considerable. A typical 
                                                                                                                         
4 See Yang, Buckendahl, Juszkiewicz, and Bhola (2002) for a recent comprehensive review of strategies 
for validating automated scoring. 
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model for monitoring raters in an operational project includes convening a group of 
scoring leaders who select and assign scores to papers to construct validation sets. Al- 
though this process may be undertaken as part of the process of selecting training materi-
als, this activity results in costs beyond those required to produce the scores reported to 
students because convening that meeting may require the expert raters to travel and will 
also likely require paying the experts for their time. In addition, administering validity 
papers to raters during operational scoring projects adds additional cost beyond that 
required to assign a score to each student response. The validity papers typically need to 
be entered into scoring queues in a manner that prevents the assigned scores from being 
recorded as operational scores. In addition, the scoring distribution system must deter-
mine when and how frequently the validity responses are administered to each rater, and 
must then redirect the assigned scores to the rater monitoring system. Administering the 
validity sets to raters during operational scoring, generating reports that summarize the 
raters’ performance on the validity sets, and reviewing and then providing feedback to 
raters based on the information in the reports, introduce additional costs within a rating 
project beyond the costs associated with producing reported scores. As a result, a very 
low rate of validity paper administration is employed, say, one validity paper for every 
20 to 100 operational papers scored. This results in a very small amount of data and a 
very slow accumulation of information regarding the performance of individual raters.  
If validity paper administration could be replaced or reduced by the use of automated 
scores to monitor and evaluate raters, many of these costs could potentially be eliminat-
ed. Although automated scores would still require pulling papers to train the engine, 
assigning expert consensus scores would not necessarily be required for the validity 
papers. In addition, the entire process of having raters score responses that are not re-
ported back to students for the sake of evaluating rater performance could be eliminated 
because automated scores can be assigned to every operationally scored response. This 
would have the added benefit that every score assigned by a rater could be fed into the 
rater monitoring system. As mentioned previously, a very small number of validity pa-
pers is administered to each rater relative to the number of operational papers, due to the 
added cost of administering the validity papers. Thus, because the score of every re-
sponse that a rater scores could be used to evaluate and monitor raters, that process could 
be considerably more precise and faster than it is currently possible. 
The purpose of the research reported here is to determine the effectiveness and efficiency 
of utilizing scores from automated scoring engines to monitor and provide feedback to 
human raters compared to the use of validity sets that are selected and assigned consen-
sus scores by human scoring leaders. This study is a special case study that illustrates a 
statistical approach that can be used for analyzing three types of model-based rater ef-
fects – severity, accuracy, and centrality of each rater to answer the question, “Are depic-
tions of the quality of scores assigned by human raters comparable when monitoring is 
based on scores from an automated engine (AE) versus human experts (HE)?” To that 
end, we analyze a real experimental data consisting of ratings on texts written by middle-
school students, taken from a rater training study, and apply the mixed-effects ordered 
probit models (Rabe-Hesketh & Skrondal, 2012). Specifically, the analysis starts from a 
simple model that estimates a single rater effect (e.g., rater severity) and develops into a 
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more complicated model that estimates multiple rater effects including the rater severity 
and inaccuracy. We then interpret how the model parameters and their transformations 
are related with the rater effects of interest (model-based rater effects) to illustrate the 
human rater monitoring using the AE for three aspects of the rater effects compared to 
the HE.  

Statistical modeling of rater effects 

Rater effects can be defined simply as “patterns of ratings that contain measurement 
error” (Wolfe & McVay, 2012). Raters may introduce errors into examinee scores for 
various reasons – unfamiliarity with or inadequate training in the use of the rating scale, 
fatigue or lapses in attention, deficiencies in some areas of content knowledge that are 
relevant to making scoring decisions, or personal beliefs that conflict with the values 
adopted in the scoring rubric (Myford & Wolfe, 2003, 2004; Saal, Downey, & Lahey, 
1980). Wolfe and McVay (2012) identify several continua of rater effects that are com-
monly studied in rating applications. They define “severity” as when a rater consistently 
assigns a lower score than the target scores. In contrast, “leniency” is defined as when a 
rater consistently assigns a higher score than the target scores. Commonly, severi-
ty/leniency has been evidenced by a decrease/increase in the average score associated 
with a rater (Wolfe, 2014). If severity/leniency exists in the scores, then some examinees 
will be incorrectly classified in decision making contexts such as during college admis-
sions or placement or determining graduation qualification. Wolfe and McVay (2012) 
define “accuracy” as when a rater exhibits little random variability in their scores, com-
pared to an assumed-to-be perfect indicator (e.g., either HE or AE) (Wolfe, 2014). “Inac-
curacy,” on the other hand, occurs when the scores assigned by a rater exhibit a large 
amount of variation, relative to the assumed-to-be-perfect comparison standard. Finally, 
Wolfe and McVay (2012) define “centrality” as when a rater consistently assigns scores 
in the middle categories of the rating scale. The distribution of assigned scores can be 
compressed (centrality) or pushed into tails (extremity, the opposite of centrality) when 
compared to gold standard (e.g., HE or AE). For example, with four categories, a rater 
with centrality would likely use 2 or 3 more often and use 1 or 4 less often than the target 
scores. When centrality/extremity exists in the scores, examinees in the tails of the distri-
bution may be misclassified and/or decision makers may believe that examinees are less 
or more homogeneous than is actually the case. Commonly, centrality/extremity has been 
evidenced by a decrease/increase in the standard deviation of the scores associated with a 
rater (Wolfe, 2014).  
A body of literature describes how rater effects may be detected in rating data. In the 
family of Rasch modeling, the multi-faceted Rasch model (MFRM), which considers 
person, item, and rater facets, is a popular approach in item response theory (IRT) mod-
eling. In fact, the MFRM has the same mathematical form as the linear logistic test mod-
el (LLTM) (Fischer, 1973). The MFRM and the LLTM incorporate a rater severity pa-
rameter in an additive extension of the Rasch model. For example, based on the partial 
credit model (PCM; Masters, 1982) for polytomous scores, the MFRM can be written as  
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  logit ( | , { , 1})nir n nir n i ik rP X k X k k            (1)  

where Xnir is the polytomous score among the k categories, given to examinee n on item i 
by rater r, θn is the latent proficiency of examinee n, βi is the difficulty of item i, τik is the 
kth step difficulty for item i, and ρr is the severity of rater r.  
In rater monitoring contexts, it is common to focus on the scores assigned to a single 
writing task even though it may be more efficient from a measurement perspective to 
base rater evaluations on scores assigned to several writing tasks. The reason for this is 
logistical – raters commonly are trained and assign scores to student responses using a 
single scoring rubric that was written for a specific prompt. Similarly, it is also common 
to have students respond to only a single prompt due to the amount of testing time re-
quired for open-ended assessment items. Therefore, we focus our attention to scoring 
contexts in which each rater assigns scores to student responses to a single prompt or 
item. In these contexts, the item facet in Equation (1) can be eliminated, which is analo-
gous to the PCM as 

  logit ( | , { , 1})nir n nir n r rkP X k X k k           (2) 

where τrk is the kth step severity for rater r, and ρr is the overall severity of rater r. Similar 
to the PCM, we can allow different step severity for each rater. Under the generalized 
linear model framework, the PCM is a special case of a multinomial logit model, namely, 
an adjacent category logit model with logit link and step difficulties associated with 
category k of item i (Agresti, 2002; Skrondal & Rabe-Hesketh, 2004). Although there 
can be many link functions that can be acceptable, the logit link has been more common-
ly used in the psychometric literature.  
In this study, we decide to use the probit link due to a simpler estimation of the model 
parameters of our interest. Although the logit and probit functions are practically identi-
cal except that logit curve has slightly flatter tails, up to our knowledge, no software 
allows us to estimate the model parameters (i.e., heteroscedestic measurement error for 
individual raters) we are interested in via a logit link. Thus, we chose to apply mixed 
effects ordered probit models.  
Furthermore, it should be noted that the scores from human raters (HRs) are qualitatively 
different from the scores from HE and AE. More specifically, scores from HRs are given 
independently by individual HRs for each essay, while the HE score is a consensus score 
agreed by a group of human experts through discussion or expert panel. Thus, HE scores 
are different from independently observed HR scores. Moreover, the AE score is a pre-
dicted score using a mathematical algorithm based on usefully predictive features of the 
text (e.g., essay length), and the algorithm is validated based on separate data (Landauer, 
et al., 2003a, 2003b). Clauser and colleagues (2000) and Landauer and colleagues (2000) 
noted that AE scores were generated to be more consistent due to the mechanical nature 
of its scoring processes. In other words, the two types of target scores, HE and AE, are 
not exchangeable with the HRs (Raudenbush, 1993); thus, they can respectively serve as 
a reference point in two consecutive analyses. For example, we have no a priori basis to 
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predict how the parameter of human rater r will differ from that of another human rater 
r’, but we may indeed have prior information about the parameter of HE and AE.  
Thus, in this study, considering the exchangeability principle, we apply two consecutive 
analyses anchoring the target scores (HE or AE): a) HR + HE where we fix the model 
parameter for the HE and estimate them for individual HRs and b) HR + AE where we fix 
the model parameter for the AE and estimate them for individual HRs. If HE and AE depict 
the rater effects in the same way, we can expect that the parameter estimates for individual 
HRs from two consecutive analyses would show consistent and similar patterns.  
In line with that comparison, we introduce two models applied in this study, a mixed 
effects ordered probit model for rater severity (S-HE, S-AE), and another model for rater 
severity and rater-specific measurement error variances (SA-HE, SA-AE). We also relate 
the model parameters to the rater effect indicators of our interest (i.e., rater severity, rater 
accuracy) and introduce how their transformations can be used for the third rater effect 
indicator of our interest (i.e., rater centrality). In summary, four types of analyses are 
conducted depending on the target score and model specifications, as summarized in 
Table 1. Note that rater centrality is not estimated as a model parameter but is deter-
mined from the thresholds transformed based on the resulting parameter estimates.  
Elsewhere, Wolfe and colleagues (Myford & Wolfe, 2004; Wolfe & McVay, 2012; 
Wolfe, 2004) provided a summary of rater effect indicators. However, those indicators 
are grounded and derived from a different modeling strategy, which was the Rasch rating 
scale model (Andrich,1978) or the many-facet Rasch model (Linacre, 1994), and they 
used the residuals after those models are fitted. Since the models analyzed in this study 
use different link function and different estimation methods, it is not yet known whether 
those indicators are directly applicable to the model employed in this study. Instead, we 
identified rater effect indicators relating to the estimated model parameters and their 
transformations. In this process, we utilize HE or AE as “target scores” by fixing their 
estimates and use them as the basis for making decisions about individual raters (HR). 
We then compare the decisions that are made utilizing HE and AE scores as targets to 
determine whether HE and AE produce different depictions of the performance of indi-
vidual human raters.  

 
Table 1: 

Four types of analyses 

 
Mixed effects ordered probit models 

Rater severity Rater severity + Rater accuracy 

Target 
Score 

HE (HR+HE)
S-HE 

(severity estimated using HE 
anchoring) 

SA-HE 
(severity and accuracy 

estimated using HE anchoring) 

AE (HR+AE)
S-AE 

(severity estimated using AE 
anchoring) 

SA-HE 
(severity and accuracy 

estimated using AE anchoring) 
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Mixed-effects ordered probit model for rater severity 

We can specify models for ordinal scores by using either a generalized linear mixed 
model formulation or a latent-response formulation (Agresti, 2002; Rabe-Hesketh & 
Skrondal, 2012). There are three ingredients for a generalized linear mixed model formu-
lation; link function (i.e., logit, probit), linear predictor (i.e., set of independent varia-
bles), and conditional distribution of the responses (i.e., multinomial distribution for 
ordinal responses).  
First, we consider a cumulative ordinal probit model with a random intercept for person 
proficiencies, ~ (0, )n N  . Mixed-effects ordered probit regression is ordered probit 
regression containing both fixed effects and random effects. In the absence of random 
effects, mixed-effects ordered probit regression reduces to ordered probit regression. The 
first model for the ordinal score Xpr assigned by rater r to person p’s essay is 

 Pr( | ) ( )pr p p sX s        (3) 

where ( )   is the standard normal cumulative density function and s is the threshold 
for score category s. This model can also be written using the latent-response formula-
tion, with the latent-response model and the threshold model specified as  

 * ,       ~ (0, ),       | ~ (0, )pr p pr p pr pX N N          (4) 

 *
1                       if ,    1,...,pr s pr sX s X s S       (5) 

respectively, with 0    and S   . This corresponds to a classical test theory mod-
el for X*

pr when p  represents truth and pr  represents measurement error. The model 

assumes that all r raters evaluate the same truth p  with the same measurement error 
variance   and assign scores using the same thresholds s  (s=1,…,S-1). We can allow 
for rater severities to be different by including rater-specific fixed-effects r . However, 
one of the intercepts must be set to zero to identify all the thresholds. Retaining the 
threshold model (5), we extend the latent-response model (4) to  

 *
1 1 2 2 ( 1) ( 1)pr p r r R R r prX x x x                (6) 

where 1 2 ( 1)( , ,..., )r r r R rx x x     are dummy variables for raters from 1 to R-1. This Equa-
tion (6) corresponds to the S-HE and S-AE in Table 1 with use of different target scores 
R. The corresponding regression coefficients 1 2 1( , ,..., )R     represent how much more 
severe or lenient each rater is than the last rater R (chosen arbitrarily). We arrange the 
last rater R as the HE or AE (i.e., the comparison target in a rater monitoring application) 
and fix the intercept of HE or AE as zero respectively in each analysis. 
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Mixed-effects ordered probit model for rater severity and rater-specific 
measurement error variances 

Although the above model accommodates rater severity, it is relatively restrictive be-
cause it still assumes that all raters r have the same measurement error variance  . We 
can relax this homoscedasticity assumption by retaining the previous models (5) and (6) 
except that we now also allow each rater to have a rater-specific residual variance or 
measurement error variance r , | ~ (0, )pr n rN   . This can be accomplished by speci-
fying a linear model for the log standard deviation of the measurement errors using 
gllamm function in Stata, the software we chose to use (Rabe-Hesketh & Skrondal, 
2012):  

 1 1 2 2 ( 1) ( 1)ln( ) ln( ) / 2r r r r R R rx x x              . (7) 

In this model for level-1 heteroscedasticity, we have again omitted the dummy variable 
for the last rater R (again, chosen arbitrarily) corresponding to HE or AE, which amounts 
to setting the standard deviation of the measurement error for this rater to 1 because 
exp(0)=1. A constraint like this is necessary to identify the model because all thresholds 

s  (s=1,2,3 in our data) are freely estimated. In terms of the above parameterization, the 
measurement error variance r  for rater r becomes exp( 2 r ). In this model, each rater 
has his/her own mean and variance,  

 * | ~ ( , ),        0pr p p r r RX N      , (8) 

but applies the same thresholds to the latent responses to generate the observed ratings. 
The cumulative probabilities are  

 
*

*Pr( | ) Pr( | ) Pr( ) ( )pr p r s p r p r s
pr p pr s p

r r r

X
X s X

       
  

  
     

       .  (9) 

This model can be thought of as a generalized linear model with a scaled probit link, 
where the scale parameter r  differs between raters, r. The covariate effect r  is 
constant across categories, a property sometimes referred to as the parallel-regression 
assumption because the linear predictors for different categories are parallel.   

Rater effects in relation to model parameters and transformations 

Previously, we define severity/leniency as when a rater consistently assigns a low-
er/higher score than the target scores (HE or AE). In our study, we depicted severi-
ty/leniency by specifying the target scores to be zero, so estimates from the two separate 
analyses that utilize HE and AE in this manner depict a rater as being severe if his/her 
rater severity/leniency ( r ) estimate is significantly smaller/greater than zero. We also 
defined accuracy/inaccuracy as when a rater exhibits large/small random variability in 
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their scores, compared to the target score. In this study, we focus on the measurement 
errors associated with individual raters for rater accuracy. Thus, using the resulting esti-
mates from the two sets of analyses that utilize HE and AE, a rater was considered accu-
rate/inaccurate if his/her rater-specific measurement error variance ( r ) estimate is 
significantly lower/higher than the fixed value of HE or AE (1). Finally, we defined 
centrality/extremity as when a rater consistently assigns scores in the middle/extreme 
rating scale categories. Using the resulting estimates from the two analyses, we calculate 
estimates of the “reduced-form” thresholds (Rabe-Hesketh & Skrondal, 2012).  

 

1

1

            for r = 1
exp( )

   for r > 1
exp( )

s r

rsr

s sr rr

r

 


  


 
 
     
  

  (10) 

After transforming to the reduced-form thresholds, we decide which raters exhibit cen-
trality using the thresholds of the HE and the AE as the basis. In detail, we compute the 
differences between the thresholds and compare those values to the corresponding differ-
ences computed from the HE and the AE. For example, if the gap between the thresholds 
for a certain rater is smaller than the corresponding gap from the HE, that rater is consid-
ered exhibiting centrality compared to the HE.  

 Estimation 

Because our modeling requires us to handle the rater-specific heteroscedastic variances, 
we utilized the gllamm command (Rabe-Hesketh, Skrondal, & Pickles, 2004) running in 
the widely available statistical package Stata (StataCorp., 2013). Maximum likelihood 
estimation was implemented in the software gllamm using adaptive Gauss-Hermite 
quadrature with eight integral points for the mixed-effects ordered probit models (Rabe-
Hesketh, Skrondal, & Pickles, 2005). Adaptive quadrature appears to be suitable when 
the posterior distribution is close to normal and when it is highly non-normal, whereas 
ordinary quadrature fails in the first situation (Rabe-Hesketh, Skrondal, & Pickles, 2002). 
Adaptive quadrature is computationally more efficient than ordinary quadrature and 
other computer intensive methods such as Markov chain Monte Carlo. It also provides a 
value for the maximized log likelihood useful for likelihood-ratio tests. In contrast to 
ordinary quadrature, adaptive quadrature also appears to give good parameter estimates 
for linear models, and is useful for complex multilevel latent variable models that cannot 
yet be handled by other software, although computationally less efficient than other 
methods.  
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Illustration 

Data 

Each of 131 human raters (HRs) assigned holistic scores on a 4-point rating scale to 189 
essays written by middle-school students in response to an explanatory prompt on a 
statewide writing assessment. Each essay was assigned a consensus score, which is con-
sidered as gold standard, by a panel of HE. Figure 1 presents the structure of the empiri-
cal data used in this study. The data has a multilevel structure, in which the ratings are 
nested not only within students but also within each rater. Note again that we viewed the 
ratings from the HE and the AE as two structurally different target scores from the HRs 
and fixed their estimates, treating them as the criterion for other HRs.  
AE scores used in this study were obtained from an automated scoring engine, the Intel-
ligent Essay Assessor (IEA; Foltz, Streeter, Lochbaum, & Landauer, 2013; Foltz, Laham, 
& Landauer, 1999) that was calibrated on a separate sample of essays from the same 
population in this study. The most unique feature of this IEA system is the application of 
latent semantic analysis (LSA) to measure the writing quality more directly. That is, LSA 
can judge the semantic relatedness and similarity among essays rather than relatively 
peripheral aspects, such as grammar and typos. To compute a total outcome score, IEA 
combines three kinds of components – content, style, and mechanics – by a form of 
constrained multiple regression based on human scores in a training sample. Landauer 
and colleagues developed IEA based on LSA, and reported validity and reliability of IEA 
scores using many sets of simulated and real data sets (e.g., Landauer, et al., 2003a, 
2003b): Overall, IEA to human reliabilities were the same as human to human reliabili-
ties within probable measurement error.  

 

 
Figure 1: 

Data Structure 
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Descriptive results 

Table 2 presents a direct comparison between the AE and the HE for the 189 essays. Out 
of the total 189 essays, the exact agreement rate between the HE and the AE was 
64.02%. There was only 1 case in which the discrepancy between the AE and the HE 
was greater than 1 score point. When the off-diagonal elements were summed, the upper 
diagonal was 14.29% while the lower diagonal was 21.69%, which suggests that the AE 
was likely to produce lower scores compared to the HE. Interestingly, at the higher score 
category, the discrepancy was large: Only 0.53% when the AE gave 4 but HE gave 3, but 
6.35% when the HE gave 4 but the AE gave 3. 
To get a sense of how the rater effect indicators compared with the target scores, three 
types of corresponding descriptive statistics were calculated. First, regarding severi-
ty/leniency, the percentage of scores that was higher than the target scores given by 
human raters was calculated. From this aggregated information, the AE appears slightly 
more severe than the HE, so more human raters are classified as lenient when the AE 
was used as the target score, ignoring the score categories. Second, regarding accura-
cy/inaccuracy, the exact raw score agreement rate with the target scores for each rater 
was calculated. When the HE was used as the target score, the exact agreement rates 
ranged from 38.10% to 73.55%, while the corresponding range was from 35.45% to 
67.20% when the AE was used as the target score. The median rate was 56.61% for the 
HE and 53.97% for the AE. The correlation between the two sets of exact agreement 
rates was calculated as 0.72. Another way we examined the accuracy/inaccuracy was to 
calculate Spearman’s rank-based correlation between the rating from each rater and 
target scores. The range of the correlation was 0.42 to 0.77 when HE was used as a target 
score, and the corresponding range was 0.39 to 0.77 when AE was used. Taken together, 
human raters appear to be classified similarly in terms of accuracy/inaccuracy when the 
HE score was used as the target score compared to when the AE score was used as the 
target score. Third, regarding centrality/extremity, the percentage of scores in rating 
scale categories 2 or 3 was calculated for each target rater (AE and HE), and the obtained 
values were 75.13% for HE and 83.60% for AE. This suggests that the AE showed more 
centrality than the HE. The range of the corresponding values of 131 human raters was 
42.33% to 88.89%. Among the 131 human raters, 53 raters had a higher percentage of 
 

Table 2: 
Direct comparison between the AE and the HE 

AE Agreement % 
1 2 3 4 1 2 3 4 

HE 

1 20 10 1 0 10.58 5.29 0.53 0.00 
2 6 56 15 0 3.17 29.63 7.94 0.00 
3 0 23 41 1 0.00 12.17 21.69 0.53 
4 0 0 12 4 0.00 0.00 6.35 2.12 
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scores in categories 2 and 3 than the HE while only seven raters had a higher percentage 
than the AE, and all seven exhibited centrality when compared to AE as well. This ag-
gregated information suggests that the AE would likely classify fewer raters as exhibit-
ing centrality.  

Results for the mixed-effects ordered probit models 

A total of four types of analyses, which include two different mixed-effects ordered 
probit models, one for rater severity and another for rater severity as well as rater-
specific measurement error variances for two different data sets with different target 
scores, HR+HE and HR+AE, were conducted. First, based on the first model which 
specified only rater severity with the HE as a target score (S-HE), thresholds were esti-
mated as -1.65, 0.37, and 2.26, and the variance of the person proficiency distribution (
 ) was estimated as 2.08. Second, based on the first model which specified only rater 
severity with the AE as a target score (S-AE), thresholds were estimated as -1.51, 0.51, 
and 2.40, and the variance of the person proficiency distribution ( ) was estimated as 
2.07. Although the threshold estimates are not directly comparable between S-HE and S-
AE, the 95% confidence interval of the threshold estimates were overlapped by each 
other. Overall, the threshold estimates were consistently slightly higher when the AE was 
used as a target score. This implies that assuming the same measurement error variances 
across the raters, thresholds and variance of the person proficiency distribution were 
estimated quite similarly regardless of whether we use HE or AE as the target scores.  
To our knowledge, there is no statistical software that provides R2 type of statistics for 
the multilevel probit (and logit) models. Additionally, as a way to investigate whether the 
models provide sufficiently accurate fit, a link test was conducted to test the specification 
of the dependent variable using linktest function in Stata. This test was suggested by 
Pregibon (1979, 1980) based on an idea of Tukey (1949) that if a regression is properly 
specified, no additional independent variables should be significant except by chance. 
Both models have passed the link test, which suggests that the dependent variable was 
quite accurately specified in each model (S-HE: p=0.820, S-AE:p=0.822). 
Next, when we allowed different measurement error variances across each rater in the 
second model (SA-HE and SA-AE), the results showed different patterns to some extent. 
When the HE was used as a target score, the thresholds were estimated as -2.93, 0.63, 
3.97, while the corresponding values were -2.19, 0.71, and 3.42 when the AE was used 
as a target score. Unlike the results from the S-HE and S-AE, the thresholds were 
shrunken toward when the AE was used as a target score. However, the 95% confidence 
intervals associated with each threshold still overlapped each other. Moreover, the vari-
ance of the person distribution was estimated as 6.46 when the HE was used as a target 
score and the corresponding value was 4.26 when the AE was used as a target score. 
Compared with the results from the S-HE as well as S-AE, the variance estimates from 
both data sets became much larger, and the estimated variances were quite different. As 
the threshold estimates were spread wider when the HE was used as a target score, the 
person proficiency estimates were distributed in a wider range.  
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In order to compare the model fit between the two mixed-effects ordered probit models 
analyzed in this study, we can use a likelihood-ratio test (Rabe-Hesketh & Skrondal, 
2012). Comparison between the two models tests the null hypothesis that the measure-
ment error variances are identical for the raters, against the alternative that the measure-
ment error variances are different for at least two raters. Under the more restricted model 
(S-HE and S-AE), the measurement error variances are set to 1, and the thresholds of all 
raters are set to be equal; that is, in model in Equation (6), the constraints 0r   for 
r=1,2,…, R-1 in place, but the intercepts r  for raters are free parameters. The more 
complex model is the same except that the constraints for r  are relaxed (SA-HE and 
SA-AE). For both types of target scores, the likelihood-ratio test yielded that the more 
complex model fitted significantly better (χ2(131)=1089.62, p<0.001 for HR+HE and 
χ2(131)=1074.11, p<0.001 for HR+AE). AIC (Akaike Information Criterion; Akaike, 
1974) that panelizes the complexity of the models also preferred the more complex mod-
el (41190.74 vs. 40363.11 for HR+HE, and 41213.14 vs. 40401.02 for HR+AE). This 
suggests strong evidence that at least two participating raters do not have the same meas-
urement error variances. 

Next, to depict the rater effects in detail, we used the resulting estimates from the second 
model for each type of our rater effects indicators. Note again that in two different data 
sets, we fixed the parameters associated with target scores, HE and AE respectively. 
Beyond the statistical significance of each estimate, effect sizes for each type of our rater 
effects indicators need to be considered. However, because conventional effect size 
estimation is not appropriate and the associated standard errors are incorrect in a multi-
level structure setting (e.g., cluster randomized-trials, meta-analysis), we do not report 
the standard effect size at this moment (Donner & Klar, 2002; Rooney & Murray, 1996). 
Further work is needed on this topic. 

Severity/Leniency 

Figure 2 plots the rater-specific fixed effects ( r ), which correspond to the rater severi-
ty/leniency when the HE or the AE was used as a target score. In general, the rater-
specific fixed effects when the AE was used as a target score tended to have higher val-
ues compared to when the HE was used as a target score, particularly at the lower range. 
Interestingly, the range of the estimates when the HE was used as a target score was 
wider from -2.43 to 2.19, while the range of the estimates when the AE was used as a 
target score was narrower from -1.78 to 1.98. This implies that when the AE was used as 
a target score, the differences in severity/leniency across the raters are likely to be con-
densed compared to when the HE was used as a target score. The compressed pattern 
from AE is indicated by a skewed line away from the identity line, and this is likely due 
to the fact that AE scores are more centered around middle categories compared to HE 
scores, as shown in Table 1 (the percentage of scores 2 or 3: 75.13% for the HE and 
83.60% for the AE).  
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Figure 2: 

Severity/Leniency of each HR depending on the target score 

 
To be specific, raters were classified as severe if the estimate is statistically significantly 
lower than zero (i.e., fixed value of the gold standards, either AE or HE) and lenient if 
the estimate is statistically significantly higher than zero. Based on this criterion, 48 
raters were classified as lenient raters and 35 raters were classified as severe raters using 
AE as the comparison target. Interestingly, classification of the raters in terms of the 
severity/leniency were exactly matched when the HE was used as a target score. Taken 
together, although the magnitude of the estimate appears slightly different, more raters 
were classified as lenient while fewer raters were classified as severe regardless of the 
type of the target score. Thus, it appears reasonable to say that the AE depicts rater se-
verity/leniency in the same way as the HE. 

Accuracy/Inaccuracy  
Figure 3 illustrates the estimates of the rater-specific measurement error variances ( r ) 
depending on the target score. Again, estimates for the HE and the AE were fixed as 1, 
respectively (Rabe-Hesketh & Skrondal, 2012). In general, most of the human raters 
among 131 raters demonstrated higher measurement error variances compared to both 
types of target scores. In terms of the magnitude, the measurement error variances were 
estimated higher across all the raters when the HE was used as a target score, compared to 
when the AE was used as a target score. However, given that the estimates of rater-specific 
measurement error variances are located in a quite higher range, using the fixed value 1 as 
the criterion appears very stringent. In detail, the measurement error variances were distrib-
uted wider when the HE was used as a target score ranging from 0.98 to 8.48, while the 
corresponding values when the AE was used as a target score ranged from 0.66 to 5.64. 
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Figure 3: 

Rater-specific measurement error variance of each HR depending on the target score 

 
Raters were classified as inaccurate if the estimate is significantly higher than the fixed 
value 1, which seems like a very stringent criteria. Using the standard error associated 
with the rater-specific measurement error variance estimates, 95% confidence intervals 
for each rater were constructed and compared with the fixed value 1. Based on this crite-
rion, as expected, most of the raters, 122 out of 131 raters, were classified as inaccurate 
when the HE was used as the target score. In contrast, 87 out of 131 raters were classi-
fied as inaccurate when the AE was used as the target score. These 87 raters were the 
subset of the 122 raters labeled as inaccurate based on the HE. Taken together, consider-
ing the limitation that we used the harsh criterion, it seems that the AE provides a differ-
ent story from the HE for rater accuracy by labeling fewer raters as inaccurate. 

Centrality/Extremity  
Figure 4 displays reduced-form thresholds, red for the first threshold, orange for the 
second threshold, and green for the third threshold, transformed using Equation 10. The 
solid line represents the thresholds when the HE was used as a target score, and the dot-
ted line represents the thresholds when the AE was used as a target score. The thresholds 
for each rater are indexed as a larger hollow circle when the HE was used as a target 
score, and smaller solid circles are used when the AE was used as a target score. As 
illustrated, the locations of two types of the circles were quite similar apparently due to 
the parallel-regression assumption. However, as discussed before, the thresholds were 
shrunken when the AE was used as a target score compared to when the HE was used as 
a target score, and this would likely affect our decision on rater centrality/extremity.  
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Specifically, we computed the differences between the thresholds and compared those 
values to the corresponding differences from each threshold when HE and AE were used 
as target scores. Note that thresholds for each target score were not fixed, but computed 
based on the resulting parameter estimates and fixed values: the differences between the 
thresholds were larger for the HE (3.56 between the first and the second threshold, and 
3.33 between the second and the third threshold), compared to the value for the AE (2.90 
between the first and the second threshold, and 2.72 between the second and the third 
threshold). As summarized in the Table 3, when the HE was used as a target score, the 
gap between the first and the second threshold of human raters ranged from 1.22 to 3.59 
with the median of 2.13 and the mean of 2.14. The gap between the second and the third 
threshold ranged from 1.15 to 3.36 with the median of 2.00 and the mean of 2.01. The 
corresponding ranges when the AE was used as a target score showed quite similar rang-
es: the gap between the first and the second threshold ranged from 1.22 to 3.58 with the 
median of 2.13 and the mean of 2.15, and the gap between the second and the third 
threshold ranged from 1.14 to 3.35 with the median of 2.00 and the mean of 2.01. Taken 
together, the ranges from the human raters were much smaller than the ranges computed 
from the HE and the AE, implying that this criterion looks very stringent.  
Given that the thresholds of each rater based on either HE or AE yielded similar values, 
more raters are likely to be classified as demonstrating centrality when the HE was used 
as a target score because of the criterion (i.e., threshold gaps of the HE and the AE; 3.56 
and 3.33 for the HE and 2.90 and 2.72 for the AE). Based on this criterion, 130 out of 
131 raters were classified as exhibiting centrality when the HE was used as a target 
score, while 122 out of 131 raters were classified as exhibiting centrality when the AE 
was used as a target score. These 122 raters were the subset of the 130 raters labeled as 
central based on the HE. It appears that the AE depicts rater centrality slightly different 
from the HE, by labeling fewer raters as centrality.  

 
Table 3: 

Summary of distance between thresholds 

 
Mean of distances 
between thresholds 

Median of distances 
between thresholds 

Range of distances 
between thresholds 

1 & 2 2 & 3 1 & 2 2 & 3 1 & 2 2 & 3 
HE anchoring 2.14 2.01 2.13 2.00 1.22 ~ 3.59 1.15 ~ 3.63 
AE anchoring 2.15 2.01 2.13 2.00 1.22 ~ 3.58 1.14 ~ 3.35 
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Conclusion and discussion 

Due to the high cost associated with monitoring raters, particularly in the assignment of 
human consensus scores, we sought to determine whether scores from an automated 
scoring engine could supplant human consensus scores. Specifically, we analyzed empir-
ical rating data using two different mixed-effects ordered probit models – one that af-
forded comparison of raters to a human consensus score (HE) and another that afforded 
comparison of raters to an automated score (AE). The important question that we sought 
to answer was “do we make similar decisions about raters when comparing raters to 
these two target scores”. The answer for this question is summarized in Table 4. The 
table presents the number of flagged raters for each rater effect indicator when different 
target scores were used, and the proportion of identical decision between two different 
target scores.  

 
Table 4: 

Comparison between the AE and the HE 

 # of flagged raters 
(HE anchoring) 

# of flagged raters 
(AE anchoring) 

% of identical 
decision 

Severity 35 35 100.0% 
Accuracy 122 87 66.4% 
Centrality 130 122 93.1% 

 
For the data in this study, the results showed that the AE depicts the HE exactly the same 
in terms of the rater severity, while slightly different in terms of the rater centrality and 
considerably different in terms of the rater accuracy. In particular, the AE labeled raters 
identically as lenient and severe as the HE did. However, AE classified fewer raters as 
demonstrating inaccuracy and centrality. The difference was only slight for centrality 
(93% of the raters were identically labelled) and was probably unacceptable for accuracy 
labels (only 66% were identical). Unlike the consensus scores assigned by the group of 
human experts, previous studies reported that AE scores were generated to be more 
consistent due to the mechanical nature of its scoring processes (Clauser, et al., 2000; 
Landauer, et al., 2000). This could be the reason why AE did not depict the HE particu-
larly in terms of the accuracy and centrality that are more related with the variability of 
the observed scores. Furthermore, the employed criteria for rater inaccuracy and centrali-
ty appeared to be very stringent. We fixed the model parameters associated with the HE 
and the AE and used them as the criteria, but the range of the parameter estimates was 
quite large compared to those fixed values. It is possible that this is related to the rela-
tively smaller sample size compared to the huge number of model parameters, which led 
to larger standard errors. Thus, for future study, it may be interesting to explore the use 
of these models to larger data sets to examine the findings in a similar context, or to 
experiment with more reasonable and realistic criteria for rater inaccuracy and rater 
centrality.  
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Furthermore, it would be interesting to estimate effect sizes for each type of our rater 
effect indicators considering the multilevel ordinal data in this study. Recently, Hedges 
(2007) defined and proposed effect size estimation in cluster randomized trials by cor-
recting the intraclass correlation. Larsen and Merlo (2005) also suggested calculation of 
the median odds ratio as a measure of heterogeneity, which can also be understood as a 
type of effect size. However, they were not designed for ordinal data, and it is unknown 
whether their methods can be directly applicable for the multilevel probit regression we 
used in this study. Thus, it will be worthwhile to examine and possibly modify their 
methods for our setting in order to develop more practical criteria and utilize them in 
addition to the statistical significance. 
In addition, we illustrated the use of two different mixed-effects ordered probit models 
with an empirical example. A simpler model incorporated only the rater severity and a 
more complicated second model also allowed level-1 heteroscedasticity for rater-specific 
measurement error variances. Comparison between these two models revealed that it is 
necessary to relax the same measurement error variances across the raters. In particular, 
the modeling strategy used in this study is convenient and straightforward since it esti-
mates the model parameters without having to set any arbitrarily defined cut scores. 
Those model parameters can be directly related with types of rater effects indicators of 
our interest, such as rater severity/leniency and rater accuracy/inaccuracy. Fixed-effects 
rater location estimates were used for rater severity/leniency, and rater-specific meas-
urement error variances were used for rater accuracy/inaccuracy. Thus, the fixed values 
used for hypothesis testing are meaningful because they provide the basis for statistical 
comparison of individual HRs against each target score with respect to severity and 
accuracy. We also computed the thresholds using the resulting estimates to depict rater 
centrality/extremity. Both models assumed the proportional regression assumption that 
the linear predictors for different categories are parallel. Given the sample size and the 
number of model parameters, we were not successful in relaxing this assumption. How-
ever, relaxation of this assumption would lead to estimation of model parameters that are 
more directly related with the rater centrality/extremity, by allowing rater-specific 
thresholds. 
The present study rests on one real data set based on the fully crossed design, which was 
experimental and ideal enough to estimate multiple rater effects for individuals. Because 
most of the automated scoring systems, including the one used in this study, are data-
driven (from specific data sets) statistical procedures that maximize the predictive accu-
racy of the outcome variables, AE scores as a reference might not be stable enough to 
estimate multiple rater effects. Furthermore, as Clauser, et al (2000) revealed, the specif-
ic algorithm represents the policy of a sample of qualified experts. Thus, even with the 
same automated scoring engines, the results might be different depending on the trained 
data that were used for building the automated scoring engine system. Ultimately, these 
results are not readily generalizable to other tasks or to other scoring machines, but the 
presented methods can be useful to investigate the potential use of AE for rater monitor-
ing purposes.  
The potential cost savings associated with a transition from using automated scores in-
stead of the current emphasis on human expert scored validity papers is incredible. For 
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example, ignoring the cost of collecting the human expert scores and the cost of training 
the automated scoring engine, let us assume that the raters in our study would have been 
expected to score validity papers at a rate of 5% (i.e., every 20th score would have been a 
validity paper). Each of our 131 raters scored 189 essays – an extremely small project. 
That means that our raters would have scored about an additional 10 validity papers each 
(189/19 = 9.95) for the sake of rater monitoring. Jointly, they would have assigned 1,310 
scores, which would have increased scoring time and cost by 5.3% [131 raters × (189 
essays + 10 validity papers) = 26,069, 131 raters × 189 essays = 24,759, 100 × 26,069 / 
24,759 = 105.29%). A 5% savings is not insignificant. In conclusion, it seems that auto-
mated scores could, potentially, supplant human expert scores as the target for rater 
monitoring in terms of rater severity. In our study, we determined that, at least for our 
data, raters were generally labelled as exhibiting severity/leniency regardless of which 
target scores were used. However, monitoring rater accuracy/inaccuracy or centrality did 
not result in sufficient correspondence that would be useful in applied settings, which 
should be considered and interpreted with more caution.  
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