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Identification of confounded subgroups 
using linear model-based recursive 
partitioning 
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Abstract 
The absence of confounding is the fundamental assumption to endow parameters of a statistical 
model with causal meaning. Causal inference is prone to biases due to confounding when data are 
purely observational. Often the assumption of unconfoundedness may be too rigid for the entire 
population under study, but may be plausible for subpopulations. The present article introduces an 
approach to detect confounded subgroups in linear regression models through combining a recently 
proposed confounder detection approach based on kernel-based independence testing with model-
based recursive partitioning. Results of a simulation study indicate that Bonferroni-corrected inde-
pendence tests are able protect the (family-wise) Type I error rate of multiple independence testing 
across recursively partitioned local models. We discuss data scenarios under which the proposed 
approach can be expected to show adequate statistical power to detect confounded subgroups. Data 
requirements to ensure best practice for applications and strategies to further improve the statistical 
power of the approach are discussed. 
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This article discusses model-based regression tree methods from the perspective of caus-
al inference (Wiedermann & von Eye, 2016). While the presence of confounding is well 
known to bias causal inference, the effect of hidden confounders on the performance of 
regression tree algorithms (well-suited to study causal effect heterogeneity) is less 
known. The present study evaluates the robustness of a model-based regression tree 
algorithm against hidden confounding and introduces a confounder detection approach 
that makes use of non-normality of variables to test the independence assumption of 
linear models. Because violations of the independence assumption are characteristic for 
confounded (sub)samples, the approach presented in this article can be used to detect 
(un)confounded subgroups in a purely data-driven way.  
Randomized designs are the gold-standard to estimate the causal effect of an explanatory 
variable (the predictor or regressor) on a dependent variable (the outcome or regressand). 
In many experimental settings, randomization enables researchers to evaluate a treatment 
effect without the need to consider all possibly relevant covariates (i.e., additional varia-
bles which may have an effect on the outcome variable). However, in practical applica-
tions, covariates are routinely included in the analysis of data obtained from randomized 
controlled trials (RCTs) to increase precision of causal effect estimates and statistical 
power to detect treatment effects. In observational studies (i.e., when randomization is 
not feasible, e.g., due to ethical or financial constraints), researchers are commonly ad-
vised to collect and consider (a potentially large number of) covariates to statistically 
control for potential confounding factors. While statistical adjustment alone can never be 
a sufficient replacement for randomization, the hope here is that it is “good enough” to 
make valid statements about the causal effect under study. Several statistical approaches 
are available for causal inference in observational data. For example, regression discon-
tinuity designs (Thistlethwaite & Campbell, 1960) can be used to quantify causal effects 
by assigning subjects to “control” and “treatment” groups according to a pre-determined 
cut-off value of a pre-program measure. Propensity score techniques (Rosenbaum & 
Rubin, 1983) are available to reduce the effect of confounders through accounting for 
covariates that predict treatment status. As a third option, instrumental variable (Imbens 
& Angrist, 1994) approaches exist to estimate causal effects in the presence of confound-
ing.  
A question that is closely tied to the identification of causal effects, is whether the causal 
effect is constant for all subjects under study or whether effect heterogeneity is present. 
The latter case describes situations in which the causal effect systematically differs 
across subpopulations. Such subpopulations are usually defined by additional subject 
characteristics (so-called moderators; eligibility criteria for moderators are given in Kra-
emer, Kiernan, Essex, and Kupfer, 2008). Research on moderated causal effects helps to 
inform theories about the exact conditions under which causal effects can be expected to 
be large (in experimental settings, such follow-up analyses help to identify “for whom” 
the intervention works best). However, standard moderation/subgroup analysis can give 
misleading results when testing purely exploratory (data-driven) hypotheses without 
accounting for multiple testing (Wang & Ware, 2013). Without proper adjustment, the 
probability of a false positive test result increases with the number of sub-
group/interaction tests performed. For example, when the causal effect is constant for all 
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subjects and one performs 10 independent subgroup/interaction tests, the probability of 
finding at least one significant interaction effect is about 40% (Lagakos, 2006).  
The machine learning literature has developed a variety of statistical methods to maxim-
ize predictive accuracy of outcomes as a function of covariates, one of them being re-
gression trees. Regression tree techniques have also been discussed in the context of 
testing causal effect heterogeneity. For example, Dusseldorp and Van Mecherlen (2014) 
suggested so-called qualitative interaction trees (QUINT) to evaluate whether the effec-
tiveness of two treatments is equal for all subgroups of subjects (see also Doove et al., 
2016). Athey and Imbens (2016) used “honest estimation” (a modified classification and 
regression tree [CART] algorithm) to identify subpopulations that differ in the magnitude 
of their treatment effects while preserving validity of confidence intervals of causal 
effects. 
The present study focuses on another extension of the conventional CART algorithm, 
model-based recursive partitioning (MOB; Zeileis, Hothorn & Hornik, 2008). Recently, 
Fokkema et al. (2018) discussed MOB to identify treatment-subgroup interactions in the 
context of nested (multilevel) data. MOB is commonly described as a method that seeks 
to find “better fitting” local (subgroup-specific) statistical models compared to a global 
model based on the total sample. 
Recursive partitioning techniques are well-suited to 1) increase the predictive perfor-
mance and 2) capture interaction effects and complex nonlinear relations. While it is 
well-known that minimal changes in the data can change either the variables and/or the 
cutpoints selected for building a regression tree (Li & Belford, 2002; Philipp, Zeileis, & 
Strobl, 2016), violations of statistical model assumptions impose additional challenges 
on finding stable tree structures. The common characterization of regression tree meth-
ods as tools to find “better fitting models” might be misleading with respect to the as-
sumptions made for the statistical model of interest. It is important to realize that sub-
models resulting from recursive partitioning rest on exactly the same statistical assump-
tions as the global model. In other words, any application of MOB needs to be comple-
mented by a critical evaluation of model assumptions using regression diagnostics. The 
present study focuses on the absence of confounding assumption (i.e., independence of 
the counterfactual outcomes and the exposure4; cf. VanderWeele & Shpitser, 2013) in the 
context of recursively partitioned linear models using observational (non-experimental) 
data. Absence of confounding is the fundamental assumption to interpret model parame-
ter estimates as causal (Pearl, 2009). In practical applications, the absence of confound-
ing assumption may often be too rigid for the total sample, but might hold for certain 
subgroups.  
The aims of the present article are two-fold: 1) to evaluate the impact of confounding on 
the performance of MOB in the context of the ordinary least square (OLS) regression 
model and 2) to combine MOB with a recently proposed confounder detection approach 

                                                                                                                         
4 Absence of confounding is also referred to as “ignorability” (Rubin, 1978), “exchangeability” (Green-
land & Robins, 1986), “selection on observables” (Barnow, Cain, & Goldberger, 1980) or “exogeneity” 
(Imbens, 2004). 
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for non-normal variables (Wiedermann & Li, 2018, 2019). The latter enables researchers 
to test the crucial assumption of unconfoundedness in local (subgroup-specific) models. 
The remainder of the article is structured as follows: We start with introducing the theo-
retical foundations of model-based recursive partitioning. We then briefly review the 
assumption of unconfoundedness in the standard OLS regression model and consequenc-
es of assumption violations and show that, in the presence of confounders, stochastic 
non-independence of regressors and model errors becomes testable when variables devi-
ate from the Gaussian distribution. Then, we introduce a kernel-based measure of inde-
pendence that can be used to detect dependence patterns of linearly uncorrelated varia-
bles and propose a simple stepwise procedure to detect (un)confounded subgroups of a 
sample. Results from a Monte-Carlo simulation study are presented which (1) quantify 
the impact of unobserved confounders on the accuracy of MOB regression trees and (2) 
evaluate the performance of kernel-based tests of independence to detect (un)confounded 
subgroups. The article closes with a discussion of data requirements and analytic strate-
gies to guarantee best practice application of the proposed approach. 

Model-based recursive partitioning 

Tree-based methods are valuable alternatives to standard parametric methods and have 
extensively been studied in the past (see, e.g., Breiman et al., 1984; Hothorn, Hornik & 
Zeileis, 2006; Quinlan, 1993; Morgan & Sonquist, 1963; Strobl et al., 2009; Zhang & 
Singer, 2010). The ability to automatically detect interactions and nonlinearities paired 
with straight-forward interpretation and visualization makes them useful statistical tools 
for applied researchers. In conventional CART algorithms, the covariate space is recursi-
vely partitioned to identify subgroups with different values of an outcome variable. In 
contrast, MOB uses parameters of a model (instead of values of an outcome) as the basis 
for recursive partitioning. In other words, the MOB algorithm partitions a set of covari-
ates by evaluating parameter instabilities of a model (e.g., the linear regression model). 
Identifying a significant instability with respect to a partitioning covariate implies that 
subgroup-specific (conditional) effects exist in the dataset. MOB can be used to estimate 
such conditional effects and identify the corresponding subgroups. More specifically, a 
parametric model is formulated to represent a theory-driven empirical question (in the 
present study, the parametric model of interest is the standard linear regression model 
and the parameters of interest are the regression slopes). Following the formulation of 
the research question, the corresponding parametric model is fed into the MOB algorithm 
that tests whether relevant covariates exist which would alter the parameters of the mod-
el. Regression trees proceed through a search of all possible splits (algorithmic details 
are given below). A large tree is constructed and then pruned back with a cross-
validation scheme, to avoid over-fitting. The MOB algorithm terminates in end nodes, 
each of which consists of a local parametric model.  
The MOB algorithm consists of four steps: Step one, parameter estimation, starts by 
fitting the model  , θM Y  (with Y being the dataset and θ describing the model parame-
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ters), to all observations in a node by estimating θ via minimization of the objective 
function Ψ (usually the negative log-likelihood) 
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and  Ψ ,θiy  being the likelihood contribution of the i-th subject (i = 1, ..., n). The sec-
ond step, testing parameter instability, assesses parameter estimates with respect to every 
ordering of the partitioning variables, Z1, …, Zt (j = 1 , …, t). Under the null hypothesis of 
parameter stability, we do not expect systematic structural changes. In contrast, parame-
ter instabilities are present when one or more of the model parameters change signifi-
cantly due to the ordering caused by a partitioning variable Zj. Here, the subject-wise 
score/estimating function (i.e., the derivative of the log-likelihood distribution with re-
spect to )  
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is a general measure of deviations in log-likelihood based models. For OLS regression 
models, the score function is given by the product of the OLS residuals and the model 
matrix. These deviations are cumulatively aggregated along the (ordered) covariates and 
generalized M-fluctuation tests (Zeileis & Hornik, 2007) are used to test stability of the 
score function. Because the number of partitioning variables can be large, fluctuation 
tests should be corrected for multiple testing (e.g., using Bonferroni adjustment). If pa-
rameter instability is identified, the variable with the smallest p-value is selected. The 
third step, splitting, computes the split points that locally optimize the partitioned likeli-
hood (i.e., the sum of the likelihoods before and after a split point τ)  
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with  θ̂ L  and  θ̂ R  being the model parameters based on the two subsamples before (i.e., 
  {  | }ijL i Z   ) and after the split point (i.e.,   {  | }ijR i Z   ). The entire procedure 

(Steps 1 – 3) is repeated until no parameter instabilities are detected or the number of 
subjects in a subsample is smaller than an a priori selected minimum node size (e.g., n   
10). Each terminal node consists of a subgroup-specific local (parametric) model 

 , θk kM Y  (k = 1, …, K) with subgroup-specific model parameters θ .k  

 
 



M. P. van Wie, X. Li & W. Wiedermann 370

Confounders in linear regression models 

While researchers in the psychological, educational, and behavioral sciences often loose-
ly define a confounder (u) as a variable that is simultaneously associated with the focal 
predictor (x) and the outcome (y) without linking x and y in the sense of a mediational 
causal chain (x → u → y), this definition is inadequate from the perspective of “con-
founder control” to eliminate biases in causal effect estimates: There exist covariates that 
are associated with the predictor and the outcome, the control of which introduces (rather 
than eliminates) biases in causal effect estimates (VanderWeele & Shpitser, 2013). Con-
sider, for example, a causal mechanism of the form x → u ← y, i.e., u is a common effect 
of x and y. While u is in line with the somewhat loose definition of “simultaneous associ-
ation with x and y”, controlling for (or conditioning on) u induces a bias in the causal 
effect estimate while ignoring u in the analysis would lead to an unbiased estimate of the 
causal effect. This phenomenon is known as a collider-bias (Elwert & Winship, 2014). A 
more rigorous definition of a confounder has been proposed by VanderWeele and Shpit-
ser (2013)5.  
The adverse effects of the presence of a confounder can be illustrated as follows. Sup-
pose that the “true” underlying data-generating mechanism in the k-th subgroup can be 
written as (without loss of generality, we assume that model intercepts are zero) 
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with  k
yxb  being the causal effect of interest,  k

xub  and  k
yub  being the regression slopes of 

the confounder u of the k-th local regression model where    k k
xu yub b   0 for at least one of 

the K local models. Let  ˆ k
yxb  be the estimated causal effect of the k-th local model. Fur-

ther,  k
xe  and  k

ye  denote error terms which are assumed to be independent of the corre-

sponding regressors and of each other and  ˆ k
xe  and  ˆ k

ye  are the observed model residuals 

in the k-th local model. When controlling for u, the regression coefficient  ˆ k
yxb  is an 

unbiased estimate of the “true” causal effect of x on y, that is,    ˆ k k
yx yxE b b     (with E 

being the expected value operation).  

                                                                                                                         
5 These authors focused on two fundamental properties that need to be fulfilled for an adequate definition 
of a confounder, 1) whether control for all confounders is sufficient to control for confounding and 2) 
whether each confounder can be used to eliminate or reduce the confounding bias. Based on these two 
necessary properties, the authors defined a confounder “… as a pre-exposure covariate C for which there 
exists a set of other covariates X such that effect of the exposure on the outcome is unconfounded condi-
tional on (X, C) but such that for no proper subset of (X, C) is the effect of the exposure on the outcome 
unconfounded given the subset” (p. 196). 
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Next, suppose that u has not been observed (or, equivalently, u is erroneously omitted 
from the model). In this case, the model can be written as 

        ' 'k k k k
yx yy b x e    

and  'ˆ k
yxb  will now be a biased estimate for  k

yxb . Specifically, one obtains 
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with     ,k kcov x u  being the covariance of  kx  and  ku . From the above equation, it 

follows that    ' k k
yx yxb b  when   0k

yub   and     ,k kcov x u   0 (or, equivalently,  k
xub   0). 

Common confounder detection approaches rely on so-called instrumental variables 
(IVs). IVs are used to isolate that part of the predictor variation that is not influenced by 
the confounder. In general, two conditions need to be met to ensure that an IV is reliable 
(see, e.g., Pearl, 2009): First, the IV must be independent of all exogenous factors that 
affect the outcome when the predictor of interest is held constant (known as exclusion 
restriction). Second, the IV is assumed to be correlated with the predictor of interest 
(known as the strength of an IV). While a “weak” IV is likely to produce a biased effect 
estimate (Bound, Jaeger, & Baker, 1995), the exclusion restriction assumption cannot be 
tested using standard methods of correlation and regression in just-identified models 
(i.e., models with as many predictors as IVs). Therefore, strong substantial rationale is 
needed to justify the role of a variable as an IV. When an IV is available, a Hausman-
type specification test (Hausman, 1978) can be used to test the equality of an IV-based 
two-stage least square effect estimate ( IVb ) and the standard OLS estimate ( OLSb ) where 

IV OLSb b  holds under unconfoundedness. Because IVs may be hard to come by in prac-
tical applications, we focus on testing the assumption of unconfoundedness without 
requiring IVs. Instead of making use of additional external data information, the present 
approach assumes that variables under study are non-normally distributed. Under non-
normality, asymmetry patterns of the independence assumption inherent to the linear 
regression model (i.e., regressands are assumed to be independent of the error term) 
emerge. Such independence properties have been used in the past in the development of 
causal learning algorithms (Shimizu et al., 2011), confirmatory methods of testing causal 
effect directionality (Wiedermann & von Eye, 2015, Wiedermann & Li, 2018), and au-
tomated covariate selection algorithms (Entner, Hoyer, & Spirtes, 2012). Further, 
Wiedermann and Li (2019) used these independence properties to detect confounding in 
linear models. 
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Confounder detection under non-normality 

The confounder detection approach proposed by Wiedermann and Li (2019) assumes 
that 1) the relation of the two focal variables (x and y) can be described by the linear 
regression model (the issue of nonlinear relations is addressed in the Discussion section), 
2) the predictor is exogenous, continuous, and non-normally distributed (i.e., the cause of 
x lies outside the model, x is at least interval-scaled, and x deviates from the perfect 
Gaussian distribution), and 3) the error term of the unconfounded model is non-normally 
distributed and independent of all regressors. The theoretical foundations for detecting 
confounders under non-normality are summarized in the so-called Darmois-Skitovich 
(DS) theorem (Darmois, 1953; Skitovich, 1953). The DS theorem states that if two sto-
chastically independent variables 1v  and 2v  are linear functions of the same independent 
random variables iw  (i = 1 ,…, l with i   2),  

1 α
l

i i
i

v w   and  2 β
l

i i
i

v w  

(with αi  and βi  being constants), then all component variables iw  where α βi i   0 
follow a normal distribution. The reverse corollary, therefore, implies that if a common 
variable iw  exists that is non-normal, then 1v  and 2v  must be non-independent. It is 
easy to show that this reverse corollary applies in the context of the linear regression 
model whenever a confounder u is present and the variables under study deviate from the 
normal distribution (for notational simplicity, in the following, we drop the subgroup 
index k). The regression model is then given by  
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Thus, the error term of the mis-specified model ' '
yx yy b x e   can be written as  
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from which follows that x  and '
ye  consist of the same common component variables u  

and xe  whenever  '
yx yxb b   0 (which holds by definition when confounding is pre-

sent). According to the DS theorem, x  and '
ye  will be non-independent when at least 

one of the two component variables ( u  and xe ) are non-normal. Because x is a convolu-
tion of u and xe , it follows that non-normality of x implies that at least one of the two 
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components is non-normal. In contrast, under yub  = 0 one obtains  '
yx yxb b  = 0 and the 

above equation reduces to '
y ye e . As a consequence, x will be independent of '

ye  be-

cause of its independence of ye . When x and u are independent, it follows that xub  = 0 

which, again, implies  '
yx yxb b  = 0 and the above equation reduces to '

y yu ye b u e  . 

Again, '
ye  and x will be independent due to the independence of u, x, and ye . Irrespec-

tive whether confounding is present or not, estimated residuals 'ˆye  will always be uncor-
related with x. Therefore, to test the presence of confounders, statistical inference meth-
ods beyond linear uncorrelatedness are needed. In the following section, we introduce 
such methods, so-called kernel-based independence tests. 

Testing non-independence in uncorrelated variables 

As shown in the previous section, under non-normality of variables, hidden confounders 
can be detected through evaluating stochastic independence of a (linearly uncorrelated) 
regressor (x) and the residuals ( 'ˆye ). Stochastic independence of two variables ( 1v  and 

2v ) is defined as        1 2 1 2E f v g v E f v E g v            = 0 for any absolutely integra-

ble functions  f C  and  g C . Thus, stochastic independence implies uncorrelatedness, 
however, the reverse statement does not hold, i.e., a zero first-order correlation does not 
imply stochastic independence. In principle, tests of stochastic independence can be 
constructed by inserting functions  f C  and  g C  and evaluate whether 

    1 2cov f v g v  = 0 holds (so-called non-linear correlation tests; see, e.g., Hyvärinen, 

Karhunen & Oje, 2001). However, inserting all possible functions is not feasible in prac-
tical applications which implies that such tests show inflated Type II errors (Wieder-
mann, Artner, & von Eye, 2017). Therefore, we focus on a kernel-based measure of 
stochastic independence – the Hilbert-Schmidt Independence Criterion (HSIC; cf. Gret-
ton et al., 2008) – which can be shown to be an omnibus measure for detecting any form 
of dependence in the large sample limit. 

The HSIC is defined as follows: Let 1v  and 2v  be two continuous variables with  
sample size n and define 111TH I n   with I  being an n-th order identity matrix, and 
1 being a n   1 vector of ones (1T  is the transpose of 1 ). Further, K  and L  are n   n 
matrices with cell entries     1 1,ij i jk k v v  and     2 2,ij i jl l v v  where k  and l   

define Gaussian kernels of the form    2 2
1 1 1 1, exp σT Tk v v v v     and 

   2 2
2 2 2 2, exp σT Tl v v v v     with 2

1 1
Tv v   and 2

2 2
Tv v   being squared Euclid-

ean distances of 1v  and 1
Tv  and 2v  and 2

Tv . The parameter σ  represents a bandwidth 
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parameter which can be determined using the so-called median heuristic (i.e., the median 
of all pairwise Euclidian distances; Sriperumbudur et al., 2009). The HSIC statistic can 
be obtained through ˆHSIC nn T C  where n̂T  is based on the trace of the matrix product 

KHLH ,  2/  ˆ 1nT n trace KHLH . When 1v  and 2v  are stochastically independent, n̂T  
approximates zero. In contrast, if the HSIC significantly deviates from zero, the null 
hypothesis of independence of 1v  and 2v  can be rejected. To test the null hypothesis of 
stochastic independence, Gretton et al. (2008) suggested to approximate the null distribu-
tion of nT  as a two parameter gamma-distribution.  

In the present study, we propose to apply the HSIC test to detect potential confounding 
in recursively partitioned linear regression models by making use of the following step-
wise procedure:  
1. Use the MOB algorithm to obtain K local (subgroup-specific) linear regression 

models        k k k k
yx yy b x e   (k = 1, …, K) with  ky  and  kx  being the outcome and 

predictor scores for subgroup k. 
2. Extract the OLS residuals of the k-th local model, i.e.,        ˆˆ k k k k

y yxe y b x  .  

3. Evaluate whether stochastic independence holds for  kx  and  ˆ k
ye  using the HSIC 

test and reject the null hypothesis of independence if the HSIC significantly differs 
from zero.   

To adjust for multiple testing across the K subgroups, a simple Bonferroni correction can 
be applied. In other words, given K local models, the significance of the HSIC statistic is 
evaluated using a nominal significance level of *α α / K .  

Monte-Carlo simulation 

To quantify the impact of unobserved confounders on the accuracy of MOB regression 
trees and to assess the Type I error and power properties of the HSIC test in the context of 
detecting local confounding, a simulation experiment was performed using the R statistical 
programing environment (R Core Team, 2019). The data generating mechanism is given in 
Figure 1. Each simulated dataset (n = 1000) consisted of four different subgroups with Z1, 
Z2, and Z5 representing the relevant partitioning variables among a set of t covariates. The 
four subgroups differed in the magnitude of the causal effect (  k

yxb ; intercepts were fixed at 
zero throughout the study) and in the presence/absence of an unobserved confounder. In 
subgroup 1 (i.e., cases where Z1   17 and Z2   30), the outcome scores were generated 
using the unconfounded model        1 1 11

yx yy b x e   with  1
yxb  = 0.75. In subgroups 2 and 3 

(i.e., when Z1   17 and Z2   30, or when Z5   63 and Z2   30) no confounders were 
present and the causal effect was set to zero (  2

yxb  =  3
yxb  = 0). In subgroup 4 (when Z5   63 

and Z2   30), an unobserved confounder u was present, i.e.,        4 4 4 4
xu xx b u e   and 
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           4 4 4 4 4 4
yx yu yy b x b u e   , the causal effect was fixed at  4

yxb  = –0.75, and the confound-

ing effects (  4
xub  and  4 yub ) where 0, 0.5, or 1. The number of partitioning variables (Z1, …, 

Zt) was either t = 5 or 15. Following Dusseldorp and Van Mecherlen (2014) and Fokkema 
et al. (2018), all partitioning variables were randomly drawn from a multivariate normal 
distribution with means for Z1, Z2, Z4, and Z5 of 10, 30, –40, and 70. The means of the re-
maining covariates (Z3 and depending on the value of t, Z6, … Z15) were randomly generat-
ed from the uniform distribution on the interval [–70, 70]. The standard deviation of all 
covariates were set to 10, the correlations among pairwise partitioning covariates were 
fixed at 0.3. Because confounder detection using kernel-based independence tests requires 
non-normality of variables, the predictor (x), the confounder (u), and the error terms xe  and 

ye  were independently sampled from the gamma distribution with pre-specified skew-
nesses of 0, 1, and 2. In case of zero skewnesses, data were generated from the normal 
distribution. The simulation factors were fully crossed and 1000 samples were generated 
for each of the 3 (magnitude of  4

xub ) × 3 (magnitude of  4
yub ) × 2 (number of covariates t) 

× 3 (distribution of x) × 3 (distribution of u) × 3 (distribution of xe ) × 3 (distribution of ye )  
= 1458 simulation conditions. 
For each dataset, the MOB algorithm was used to identify local linear regression models 
of the form      k k k

yx yy b x e   (k = 1, …, K) with at least 20 observations per terminal  
 
 

 
Figure 1:  

Data-generating mechanism. Z1, Z2, and Z5 are the partitioning variables, x is the focal 
predictor, y is the focal outcome, and u is an unobserved confounder 
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node. Linear models were estimated as generalized linear models6 (GLM;  McCullagh & 
Nelder, 1989; for a discussion of MOB in the context of the GLM see Rusch and Zeileis, 
2013) using the identity link and a Gaussian error. Bonferroni-corrected parameter stabil-
ity tests were performed using a nominal significance level 0.05. Because regression tree 
methods can be prone to overfitting in case of large samples, post-pruning based on the 
Bayes Information Criterion (BIC) was used for each estimated regression tree. Next, for 
each of the K subgroups, we computed OLS residuals and used the Bonferroni-corrected 
HSIC test (with median heuristic-based bandwidth parameters) to evaluate the independ-
ence assumption. To quantify the Type I error robustness of the HSIC test, we used 
Bradley’s (1978) liberal robustness criterion, i.e., a test is considered robust if the empir-
ical Type I error rates fall within the interval 2.5% – 7.5%. Regression trees were esti-
mated using the glmtree function of the partykit package (Hothorn & Zeileis, 
2015). Independence testing was performed using the dhsic.test function of the R 
package dHSIC (Pfister & Peters, 2017). 

Results 

In the following section, we summarize the results of the simulation study. First, we 
focus on the performance of the MOB algorithm to detect the correct tree structure in the 
presence of confounding. Specifically, we focus on tree size and overall tree accuracy. 
Following Fokkema et al. (2018), we defined an accurately recovered tree as 1) having 
seven nodes in total (i.e., three splitting and four terminal nodes), 2) the first split involv-
ing variable Z2 with a value of 30   5, 3) the next split on the left involving the variable 
Z1 with a value of 17   5, and 4) the next split on the right involving the variable Z5 with 
a value of 63   5 (here,   5 corresponds to   half the population standard deviations of 
the partitioning covariates). Second, we focus on the Type I error and power rates of the 
HSIC test. Finally, we focus on the performance of HSIC tests to identify the confound-
ed subgroup.   

Tree size and accuracy   

Figure 2 gives the average tree size as a function of regressor skewness ( γ ),x  number of 
covariates, and magnitude of confounding effects ( yub  and xub ). The distributional shape 

of the confounder (u) and the two error terms ( xe  and ye ) did not have an effect on the 
average tree size. Therefore, averages in Figure 2 were computed across all skewness 
levels of u, xe , and ye . In the absence of confounding, we observed an average tree size 
of 6.68 (SD = 0.77). The number of covariates did not affect the average tree size. How-
ever, tree size systematically decreased with the magnitude of the confounding effects.  

                                                                                                                         
6 The reason for this is that BIC-based post-pruning strategies assume that the objective function used 
corresponds to the negative log-likelihood. 
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Figure 2: 

Average tree size as a function of regressor skewness ( γ ),x  number of covariates, and 
magnitude of confounding effects ( yub  and xub ) 

 
For example, for yub  = xub  = 0.5, we obtained an average tree size of 5.69 (SD = 1.13) 

nodes, for yub  = xub  = 1, the average tree size further declined to 4.90 (SD = 0.69) 
nodes. Similarly, the average tree size decreased with the skewness of x, however, to a 
far lesser extent. Here, the average tree size decreased from 6.04 (SD = 1.08) nodes (for 
γx  = 0) to 5.98 (SD = 1.11; for γx  = 1) and 5.75 (SD = 1.21; for γx  = 2).  
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Figure 3: 

Tree accuracy as a function of regressor skewness ( γ )x , number of covariates, and magnitude 
of confounding effects ( yub  and xub ).  

 
Figure 3 summarizes the tree accuracy as a function of predictor skewness, number of 
covariates, and magnitudes of confounding effects. When no confounders were present 
and all variables followed a normal distribution, the accuracy to recover the entire re-
gression tree was 89.3%. Again, the distributional shapes of u, xe , and ye  had virtually 
no effect on tree accuracy. However, tree accuracy slightly decreased with the number of 
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covariates and the skewness of x. As expected, the presence of confounding heavily 
influenced the probability to accurately recover the regression tree. For example, the 
probability to recover the “true” regression tree was close to zero when yub  = 1 and 

yub   0.5. Thus, we can conclude that unobserved confounders are not only likely to bias 
causal effect estimates, they also heavily distort the structure of estimated regression 
trees. 

Type I error and statistical power of the HSIC test 

Type I error scenarios (i.e., rejecting the true null hypothesis of independence of predic-
tors and residuals) only exist when all variables are normally distributed. The reason for 
this is that uncorrelatedness implies independence only in the normal case (Hyvärinen et 
al., 2001). Table 1 provides an overview of the Type I error rates of Bonferroni-adjusted 
and unadjusted HSIC tests under normality of variables and errors. Type I error rates of 
unadjusted HSIC tests are inflated irrespective of the number of covariates and the mag-
nitude of the confounding effects. In other words, multiple independence testing across 
the K subgroups increases the risk of false positive results. In contrast, adjusted HSIC 
tests are better suited to protect the nominal significance level. While application of a 
simple Bonferroni adjustment renders the HSIC test conservative in statistical decisions 
(i.e., Type I error rates tend to be close to the lower robustness bound), it is important to 
note that conservative Type I error rates do not invalidate significance tests per se. In-
stead, conservative Type I error rates simply imply that, compared to an ideal signifi-
cance test with Type I error rates close to the nominal significance level, power rates of 
the Bonferroni-adjusted test can be expected to be lower. However, overall, the results in 
Table 1 confirm the importance of adjustment for multiple independence testing. 

 
Table 1:  

Type I error rates of unadjusted and α -adjusted HSIC tests 

5 Covariates 15 Covariates 
bxu byu HSIC adj. HSIC HSIC adj. HSIC 
0.0 0.0 0.099 0.023 0.109 0.028 
0.5 0.0 0.088 0.027 0.093 0.024 
1.0 0.0 0.100 0.027 0.107 0.032 
0.0 0.5 0.097 0.024 0.096 0.025 
0.5 0.5 0.091 0.024 0.078 0.014 
1.0 0.5 0.089 0.029 0.117 0.041 
0.0 1.0 0.118 0.034 0.101 0.029 
0.5 1.0 0.080 0.026 0.101 0.031 
1.0 1.0 0.084 0.028 0.085 0.028 

Note: Type I error rates outside Bradley’s (1976) robustness interval .025 - .075 are bold. 
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Next, we focus on the statistical power of the Bonferroni-adjusted HSIC test to detect 
predictor-residual non-independence due to confounding. Because of non-robust Type I 
error rates under independence, we do not focus on the power of unadjusted HSIC tests. 
Figures 4 and 5 detail the statistical power of the Bonferroni-adjusted HSIC test to detect 
non-independence in at least one of the K subgroups. Because statistical power was not 
affected by the distributional shape of x and the number of covariates, we present power 
curves as a function of error skewnesses ( γ

xe  and γ
ye ), magnitudes of confounding  

 

 
Figure 4: 

Statistical power of α-adjusted HSIC tests as a function of error skewnesses ( γ
xe  and γ

ye ) 
and magnitudes of confounding effects ( yub  and xub ) for γu  = 1 
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effects ( xub  and yub ), and the distributional shape of the confounder (Figures 4 and 5 
give the power curves for γu  = 1 and 2, respectively). Overall, statistical power increas-
es with error skewnesses and magnitudes of confounding effects which can be expected 
from the theoretical results presented above. Power curves followed an inverse U-shaped 
pattern when xe  was highly skewed and γ

ye   1. The skewness of u affects the power of 
the HSIC test only for cases where error distributions are symmetric or moderately 
skewed. 

 

 
Figure 5: 

Statistical power of α-adjusted HSIC tests as a function of error skewnesses ( γ
xe  and γ

ye ) 
and magnitudes of confounding effects ( yub  and xub ) for γu  = 2 
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Detection of confounded subgroups 

Finally, we focus on the accuracy of detecting confounded subgroups based on the re-
sults of Bonferroni-adjusted HSIC tests. Figure 6 gives the percentages of subjects which 
were correctly identified as members of the confounded subgroup. Across all simulation 
conditions, the true number of confounded subjects ranged from 154 to 493 (M = 312.5, 
SD = 105.1). The distributional shape of the confounder ( γu ) and the predictor ( γx ) did  

 

 
Figure 6: 

Percentage of subjects correctly identified as being members of the confounded subgroup  
as a function of error skewnesses ( γ

xe  and γ
ye ) and magnitudes of confounding effects 

( yub  and xub ) 
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not affect the estimated percentage of confounded subjects. The patterns presented in 
Figure 6 are quite similar to the power curves presented in Figures 4 and 5. That is, the 
percentage of identified confounded subjects increases with error skewnesses and magni-
tudes of confounding effects. However, a nonlinear pattern is observed when γ

ye   1 
and γ

xe   1. The presented approach identified 100% of the confounded subjects when 
errors were highly skewed and confounding effects were large, as expected. 

Discussion 

The present study combined asymmetry principles of the linear regression model which 
emerge under non-normality of variables with a model-based recursive partitioning algo-
rithm to detect confounded subgroups in linear models. While the presence of confound-
ing biases the structure of the data generating regression tree, kernel-based tests of inde-
pendence can still be used to identify members of a confounded subpopulation.  
The proposed approach rests on a number of assumptions that need to be evaluated criti-
cally to ensure valid results. First, the present approach builds on asymmetry properties 
of the linear model that emerge under non-normality of variables. In other words, in the 
present context, non-normality is the crucial element to detect confounded subgroups. 
This also implies that, in practical applications, non-normality needs to be an inherent 
distributional feature of the variable under study and not an artificial by-product of outly-
ing observations or ceiling/floor effects. Data visualizations (such as histograms or QQ-
plots) and normality tests are readily available to evaluate the distributional requirement 
of non-normality.  
Second, it is important to reiterate that MOB-based local regression models rest on the 
same model assumptions as a standard (global) linear model. This implies that biases 
caused by influential observations, heteroscedasticity, nonlinearity, or structural mis-
specifications (e.g., simultaneity and reverse causation biases) also jeopardize local re-
gression models. Thus, regression diagnostics are a necessary adjunct to the use of recur-
sively partitioned linear models. Further, it is important to realize that some biasing 
factors also affect the performance of the HSIC test. For example, the presence of simul-
taneity (Wooldridge, 2010) and reverse causation biases (Wiedermann & von Eye, 
2015b) can introduce dependencies between predictors and errors which can also be 
detected by the HSIC test. Therefore, a significant HSIC test may point at the presence of 
reciprocal causation (which can be considered a special case of confounding) or direc-
tional model-misspecifications where the “true” predictor is erroneously used as the 
outcome (the latter bias can be detected using so-called Direction Dependence Analysis; 
Wiedermann & von Eye, 2015a; Wiedermann & von Eye, 2015b; Wiedermann & Sebas-
tian, 2019). Further, predictor-residual dependencies may also emerge from unconsid-
ered nonlinear effects (for a discussion of the HSIC as a global goodness-of-fit test see 
Sen and Sen, 2014). To distinguish such a functional model-misspecification from the 
presence of confounding, one can start with recursively partitioning a regression model 
that includes higher order polynomials followed by an examination of local independ-
ence using local model residuals and predicted scores (instead of raw values) of x.  
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Simulation evidence suggests that multiple independence testing across subgroups leads 
to inflated Type I error rates. The present study focused on a simple Bonferroni correc-
tion to adjust the family-wise error rate (i.e., the probability of erroneously rejecting 
independence in one or more subgroups). The Bonferroni adjustment is able to protect 
the family-wise error rate regardless of the correlation among the HSIC tests. However, 
it tends to be conservative because only hypotheses with p-values ≤ α / K  are rejected 
and may, under certain conditions, lack sufficient statistical power. As an alternative, 
more powerful sequential adjustment procedures have been proposed by Holm (1979), 
Simes (1986), Hochberg (1988), Hommel (1988), and Benjamini and Hochberg (1995). 
For example, Holm’s (1979) procedure is based on the ordering of the p-values  
(from smallest to largest) for the K null hypotheses Hi (i = 1, …, K), i.e., 1p  ≤ 2p  ≤ ip  
≤… ≤ Kp , and the corresponding adjustment terms are computed sequentially using  
(K − i + 1). Since Holm’s method is known to be more powerful than the conventional 
Bonferroni correction, we can also expect that the power of multiple HSIC tests to detect 
confounded subgroups increases when using Holm’s adjustment. Similarly, one can 
further improve the power of the HSIC test through replacing the gamma-approximated 
HSIC test by a resampling-based procedure proposed by Sen and Sen (2014). These 
performance optimizations constitute material for future research.  
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