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Using a multilevel random item Rasch 
model to examine item difficulty variance 
between random groups 
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Abstract 
In educational assessments, item difficulties are typically assumed to be invariant across groups 
(e.g., schools or countries). We refer to variances of item difficulties on the group level violating 
this assumption as random group differential item functioning (RG-DIF). We examine the perfor-
mance of three methods to estimate RG-DIF: (1) three-level Generalized Linear Mixed Models 
(GLMMs), (2) three-level GLMMs with anchor items, and (3) item-wise multilevel logistic regres-
sion (ML-LR) controlling for the estimated trait score. In a simulation study, the magnitude of RG-
DIF and the covariance of the item difficulties on the group level were varied. When group level 
effects were independent, all three methods performed well. With correlated DIF, estimated vari-
ances on the group level were biased with the full three-level GLMM and ML-LR. This bias was 
more pronounced for ML-LR than for the full three-level GLMM. Using a three-level GLMM with 
anchor items allowed unbiased estimation of RG-DIF. 
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Data from educational assessment studies are oftentimes used to compare examinee test 
scores across different groups. In the U.S., educational assessments are frequently used 
to monitor student competence level and student progress in different schools and dis-
tricts (DePascale, 2003). As such, these studies have a major impact on educational 
policies and reforms (see, e.g., Baird, et al., 2011; DePascale, 2003). In cross-national 
surveys such as PISA (Programme for International Student Assessment), TIMSS (Third 
International Mathematics and Science Study), or PIAAC (Programme for the Interna-
tional Assessment of Adult Competencies), competencies are assessed in numerous 
countries in order to investigate, for example, skill acquisition in relation to educational 
systems (Foshay, Thorndike, Hotyat, Pidgeon, & Walker, 1962). In order to draw valid 
inferences from evaluation results or comparative studies, the measurement instrument – 
that is, the test items that were constructed to measure specific skills – should be meas-
urement invariant across groups (e.g. Jöreskog, 1971; Schweig, 2014). Measurement 
invariance implies that the item parameters of a measurement model are constant across 
groups, so that individuals from different groups but with equal ability levels have the 
same probability of answering the item correctly (Millsap & Everson, 1993). If the item 
response is not independent of group membership, the item shows differential item func-
tioning (DIF). DIF can occur, for example, when one group is more familiar with specif-
ic item content than other groups. DIF can be either uniform, meaning that the difference 
in item parameter estimates across groups is constant across the entire ability spectrum, 
or nonuniform, meaning that the difference in item parameter estimates across groups 
depends on the ability level. In this study, the focus lies on uniform DIF modeled with a 
multilevel generalization of the Rasch model.  
Before comparisons between two or more groups can be drawn, item parameters are 
often examined for DIF and items with DIF are excluded from analyses or revised in test 
development processes. Alternatively, DIF can be included in psychometric models and 
results of interest (e.g., group differences) can be obtained while modeling DIF simulta-
neously. In the literature, various DIF detection methods that examine whether item 
parameters are invariant across groups exist. In the traditional approaches, the groups are 
assumed to be fixed. The idea is to match the trait between the fixed groups and test for 
each item whether it is more or less difficult for the members of a specific group. In the 
context of item response theory (IRT), multi-facet IRT analysis can be used to examine, 
for example, item-by-gender interactions (Wu, Adams, Wilson, & Haldane, 2007). In 
these models, both the items and group-membership are included as fixed effects, with 
an additional interaction effect. By including group-membership as a main effect, the 
different ability levels between males and females are controlled for. An additional inter-
action effect between gender and an item indicates that an item is easier or harder for a 
particular group. Such item-by-gender interactions were investigated, for example, in 
PISA 2000 (Adams & Wu, 2002). The method also allows investigating item-by-country 
interactions. In PISA 2015 and 2018, comparability between countries is ensured by 
means of concurrent calibration with fixed-item parameter linking. Country-specific item 
parameters are fixed to be equal by default and set free for individual items and countries 
if DIF is detected (OECD, 2017). However, such analyses are quite extensive, as they 
involve inspecting every item in each country separately. 
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A crucial assumption inherent in the definition of DIF is that differences in item difficul-
ties are independent from ability differences between groups. As a consequence, methods 
to model and detect DIF require identification restrictions with respect to DIF and/or 
ability differences between groups. One typical restriction is to define anchor items that 
are assumed to be free from DIF (e.g., Kopf, Zeileis, & Strobl, 2015). If the DIF for at 
least one item is fixed to zero, ability differences between groups and DIF for the re-
maining items can be estimated. Another approach is to restrict average DIF or average 
item difficulties within groups to zero (e.g., Wang, 2004), assuming that DIF is balanced 
across all items. Another traditional approach to test measurement invariance originates 
in the structural equation modeling (SEM) framework, where multiple group confirmato-
ry factor analysis (MG-CFA) is used to test for DIF. The basic idea of MG-CFA models 
is to constrain factor intercepts and/or loadings in all groups, and compare this con-
strained model to a model where some or all item parameters are freely estimated across 
groups (Jöreskog, 1971). If the unconstrained model fits better, DIF is implied. Modifi-
cation indices can inform about which parameters exactly differ across the groups and 
should thus be freely estimated. A disadvantage of this approach is that several different 
models need to be estimated and compared. Also, the assumption of exact item parame-
ter invariance across groups is rather strict. A more recent enhancement of the MG-CFA 
approach is a Bayesian MG-CFA approximate measurement invariance approach 
(Muthén & Asparouhov, 2013). It is more lenient in its assumptions: It allows for some 
differences in item parameters, assuming that only the mean of the differences across 
groups should be zero. This approach seems very promising, but raises the question for 
adequate priors (Cieciuch, Davidov, Schmidt, Algesheimer, & Schwartz, 2014). 

DIF between random groups 

In the aforementioned traditional approaches, the prevalent idea is to compare fixed item 
parameters between fixed groups. Instead of treating group membership as a fixed factor, 
the data can also be analyzed in a hierarchical framework with individual students nested 
in groups, treating schools or countries as random factors (French & Finch, 2010). 
Throughout this paper, we will refer to DIF related to random groups as random group 
DIF (RG-DIF). This approach is appealing when the number of groups is large, such as 
in evaluations with many schools or in cross-national surveys with many countries. In 
these scenarios, the individual groups and specific item-by-group interactions (i.e. identi-
fying items functioning differentially in specific groups) might be less interesting than 
obtaining comprehensive statistics quantifying invariance violations on the item level 
(i.e. identifying items violating measurement invariance across all groups).  
Recently, Bayesian random item effects models (RIEM) have been proposed, in which the 
country specific item parameters are considered random deviations from the international 
item parameters (De Jong, Steenkamp, & Fox, 2007; Fox & Verhagen, 2010; Verhagen, 
2012). The variations in country-specific item parameters can be interpreted as indicators 
for measurement invariance violations. The models provide a very comprehensive and 
flexible framework to deal with DIF in multilevel data. The models allow for variances of 
the item parameters (both difficulty and discrimination) on the group level. Within this 
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approach, some models contain independent, item-specific variance components (e.g., 
Verhagen & Fox, 2013); others include covariances of those random effects on the group 
level (Verhagen, Levy, Millsap, & Fox, 2016). Including a covariance structure allows RG-
DIF to be correlated between items on the group level. In cross-national surveys, for in-
stance, this would mean that the direction of RG-DIF can be systematically related between 
specific items. These correlations can be of substantive interest, since they inform about 
whether pairs or groups of items show similar DIF. This may be the case, for instance, 
when two items with related item content favor certain groups of examinees similarly. To 
our knowledge, the implications and practical relevance of the group level covariance 
structure of random item effects has not yet been examined in detail. 

Aim of the study 

The aim of this paper is to examine different methods for estimating uniform RG-DIF in 
applied settings, taking effects of the group level covariance structure into account. This 
is done using a Generalized Linear Mixed Model (GLMM) framework, which can be 
implemented in a wide variety of software packages. Group level variances and covari-
ances of item parameters can be estimated using three-level GLMMs with responses 
nested in individuals and individuals nested in groups (e.g., countries). As this method is 
computationally intensive, we propose a second approach, namely multilevel logistic 
regression (ML-LR) as a screening method for uniform DIF in multilevel data. Logistic 
regression (LR) is a traditional DIF detection method (Narayanan & Swaminathan, 1996; 
Rogers & Swaminathan, 1993; Swaminathan & Rogers, 1990; Zumbo, 1999), which has 
been extended to the multilevel context (French & Finch, 2010; Moineddin, Matheson, & 
Glazier, 2007; Swanson, Clauser, Case, Nungester, & Featherman, 2002). So far, the two 
methods have not been compared with regard to their performance to detect uniform DIF 
in multilevel data. Particularly new to this study is the consideration of possible covari-
ances between items that show DIF across countries. Note that, unlike the three-level 
GLMM approach, multilevel logistic regression (ML-LR) cannot take dependencies 
between DIF items into account. The assumption that two items show similar DIF is 
rather plausible, however, and this covariation might need to be taken into account in 
order to correctly identify DIF.  
In the following, both methods are presented in detail, starting with the GLMM ap-
proach. Subsequent sections outline the simulation study we conducted to compare the 
approaches. Note that the current article focuses solely on effects of group membership 
on item difficulties, that is, uniform DIF.  

Random group DIF in a GLMM framework 

Within this paper, GLMMs with a logit link function for dichotomous variables were 
applied: 

  logit 1pci pgiY    , (1) 
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where pciY  is the response of person p  in group g  to item i , and pci  is the linear 
predictor part of the GLMM. A multilevel Rasch model (e.g., Kamata & Cheong, 2007) 
is given by 

 B W
pgi g p ib      , (2) 

where B
g  represents the ability level of group g , W

p  represents the within-class be-

tween-person ability part of person p , and ib  is the difficulty of item i . B
g  and W

p  

are random effects with  2~ 0, B
B
g 

   and  2~ 0, W
W
p 

  . To allow for DIF, the 

items are treated as group specific: 

 B W
pgi g p gib      . (3) 

The item difficulties can be treated as fixed or as random effects (De Boeck, 2008). 
Treating the group specific item difficulties gib  as fixed corresponds to the traditional 
multi-group approaches with item-by-group interactions. The more parsimonious alterna-
tive is a multilevel random item Rasch model, with independent, item-specific distribu-
tions  2~ ,

i igi b bb   . The item specific mean 
ib  corresponds to the overall (average) 

difficulty of an item. The item specific variances 2
ib  represent the amount of RG-DIF. 

A variance close to zero means an item is invariant; a large variance indicates that an 
item is functioning differentially across groups.  
To allow for dependencies between RG-DIF, item difficulties can be modeled as corre-
lated random effects with a joint multivariate normal distribution 

  ~ ,gi b bb Σμ  , (4) 

where bμ  is the vector of average item difficulties and bΣ  is a covariance matrix with 

the RG-DIF variances 2
ib  on the diagonal. The covariances 

,i jb  on the off-diagonal 

contain information regarding the correlations of RG-DIF between items on the group 
level. 

Separation of RG-DIF and ability differences between groups 

The identification problem of separating ability differences between groups from differ-
ences in item difficulties also exists in the case of random groups. Specifically, when 
estimating RG-DIF, the item specific variance components 2

ib  need to be separated 

from the between-group variance 2
B

 of the measured ability. With uncorrelated RG-

DIF this separation is straightforward, since group specific item difficulties ib  are cen-

tered to a grand mean of zero and their variances 2
ib  correspond to residual variation in 
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item difficulty that cannot be accounted for by group differences in overall ability. With 
correlated RG-DIF, however, the challenge to simultaneously estimate the between-
group differences in the general ability dimension and the full (residual) covariance bΣ  
in a model with random effects for all items arises. This can be addressed by introducing 
identification restrictions on gib  (e.g., fixing the sums of residuals across groups to zero). 

Within Bayesian estimation, restrictions could be placed on the covariance matrix bΣ  
itself (e.g., having the non-diagonal elements sum up to zero). Identification would also 
be given if one item is used as a reference category and only 1I   random effects are 
estimated. However, this would mean using the reference item as a DIF-free anchor and 
all variation in the other items’ difficulties would be relative to the reference. The option 
of using anchor items is introduced below as a separate method. Within a GLMM 
framework, another option to estimate random effects for all items and thus obtain a full 
covariance structure is to center predictors. Usually, to implement IRT models in a 
GLMM framework, dummy variables  0,1pgid   are generated that code which item a 
response was given to. To ensure that item effects cannot account for between group 
variances, those dummy variables can be group centered:  

 *
.pgi pgi gid d d   , (5) 

where .gid  is the mean of the original dummy variable across all persons and responses 
within one group, thus reflecting the proportion of responses that were given to the spe-
cific item i . Instead of values of zero and one, *

pgid  takes on positive values of .1 gid  

for responses given to item i  and negative values of .gid  for responses to other items. 
Using the centered dummy variables and separating the fixed item effects from the ran-
dom between-group-variation, the final GLMM for the estimation of correlated RG-DIF 
is given by 

 *

1

I
B W

pgi g p i pgi gi
i

b d b  


    , (6) 

with ib  denoting the fixed average item difficulties and gib  denoting between-group 
variation with 

   ~ 0,gi bb Σ . (7) 

In this model, the probability of all responses depends on all group specific item difficul-
ty variations gib . 

Anchor items 

When implementing the model to estimate RG-DIF in a GLMM framework, different 
items can be treated in different ways – more specifically, not all items have to be mod-
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eled as random. If only a subset J  of all items I  is modelled as random, the remaining 
items I J  are used as anchor items, meaning that their difficulty is treated as invariant 
across all groups: 

 *

1

J I
B W

pgi c p i pgj gj
j

b d b  




     . (8) 

The model with anchor items includes fixed effects for all items; a covariance structure 
between groups is only estimable for items with possible DIF, that is, J I . For these 
items, the variance-covariance matrix is estimated:  ~ 0,gj bb Σ . In Equation (6) all 
items are treated as DIF items and no anchor items are defined. Equation (6) is thus a 
special case of Equation (8) with J I . 

Logistic multilevel regression as screening method 

Logistic regression is a well-established method to analyze DIF with respect to fixed 
groups (Zumbo, 1999). The probability of answering an item correctly is predicted by a 
fixed predictor (e.g., gender) while controlling for an ability estimate ˆ

p . If the predictor 
has an impact on the item response while controlling for ability, the item shows DIF. 
This idea can be transferred to ML-LR analysis in order to examine the effect of a ran-
dom group membership while controlling for ability. Since this analysis is conducted for 
each individual item, the data structure is reduced to two levels with persons nested 
within groups. The linear predictor part of the logistic regression model can be expressed 
as 

 0 1 0
ˆ

pg p gu      , (9) 

where 0  is the intercept corresponding to the average difficulty of the respective item, 

1  is the regression weight for the ability estimate ˆ
p , and 0gu  is the group level resid-

ual with  

  2
0 ~ 0,g uu  . (10) 

In ML-LR, RG-DIF is estimated separately for each item. The variance 2
u  can be used 

as an indicator of RG-DIF, as it represents the between-group variance in item responses 
when ability differences are taken into account. For ˆ

p , any type of IRT-based or classi-

cal test score can be used. Since ˆ
p  is based on all items, it is implicitly assumed that 

group differences based on the entirety of the items are unbiased. Due to the reduction to 
a two-level model with a single random effect, this method is computationally unde-
manding. It can be implemented easily in a wide variety of established software packag-
es (e.g., lme4 in R, MPlus, HLM, SPSS, and SAS). It thus offers an attractive way to 
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screen for RG-DIF even in large data sets. One specific aim of this study is to examine 
the performance of ML-LR to detect RG-DIF in comparison with the computationally 
more intensive three-level model. The item-wise analysis by means of ML-LR implies 
that RG-DIF is treated as independent between items, since interdependencies between 
RG-DIF as represented in the off-diagonal of bΣ  in Equation (7) are not accounted for. 
Disregarding potential covariances between RG-DIF might result in biased variance 
parameter estimates. 

Method 

Simulation design 

The simulation study was conducted to investigate how the three methods – the full 
three-level GLMM, the three-level GLMM with anchor items, and the ML-LR approach 
– perform in detecting multi-group DIF when the DIF covaries between items. Given the 
problem of separating between-group differences in item difficulties and between-group 
differences in ability, increasing bias in RG-DIF estimations has to be expected for the 
full three-level GLMM when more positive correlations between RG-DIF effects are 
present. Bias is also expected for ML-LR, as it does not take dependencies between DIF 
items into account at all. Using anchor items within the three-level GLMM, which are 
known in the simulation, should allow unbiased estimation of RG-DIF for the remaining 
items. The focus of the simulation study thus lies on the covariance structure of item 
difficulties across countries, which was the main factor we manipulated. Another manip-
ulated but not extensively investigated factor was the variation in ability between groups. 
Fixed factors were item size, number of students per group, number of groups, and the 
variances of item difficulties across countries, that is, the multi-group DIF.  

Fixed design factors 

The number of items in each condition was fixed to 18I  . The amount of items is 
typically larger in large-scale assessment settings. However, there is no reason to assume 
that a larger number of items would affect the fundamental pattern of results with respect 
to the factors we are interested in. The number of groups and group size were fixed at 50 
and 100, respectively3. In practice, these sizes could represent evaluation studies with 
students nested in schools. It is not representative for large-scale assessments like PISA, 
where analyses of complex models based on the whole sample (often exceeding 500,000 
cases) are limited by computational power.  
Considering first the variances of the variance-covariance matrix of the item difficulties, 

bΣ , the variances for the 18 items were chosen to represent different sizes of DIF. Items 

                                                                                                                         
3We ran simulations with larger sample sizes (up to 200 groups with 500 individuals within each group) 
for selected conditions, and the pattern of results and size of effects didn’t change substantially. 
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one to six had a variance of zero, thus showing no RG-DIF; they can be considered an-
chor items. Items seven to twelve had a variance of 2 0.3i  , representing medium RG-
DIF. The last six items had large DIF, with item difficulty parameters varying at 

2 0.6i  . Note that these variances are the main focus of the simulation study, since the 
performance of the two approaches was evaluated based on how accurately they re-
trieved these parameters.  

Manipulated factors 

For the covariances of the variance-covariance matrix of the item difficulties, four condi-
tions with varying correlation patterns were simulated: (1) Uncorrelated random effects, 
(2) pairwise correlations, (3) correlations between half the RG-DIF items, and (4) corre-
lations between two distinct clusters of RG-DIF items. Figure 1 illustrates the four pat-
terns graphically. Note that items one to six showed no RG-DIF and thus group level  
 
 

 
Figure 1: 

 The four correlation patterns used to generate the covariances of item difficulties on the 
group level. White: r = 0.0; light grey = correlations including items with variances of zero, 

medium grey: r = 0.7; dark grey: main diagonal (r = 1.0). 
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covariances with all other items had to be zero in any of the four conditions. All correla-
tions in all conditions were set to .7, thus reflecting substantial dependencies between the 
RG-DIF of the item difficulty parameters. Positive residual correlations are more likely 
to occur for RG-DIF, as they can be caused by any factor affecting group-specific item 
difficulties in the same direction, such as common content or format. Negative correla-
tions, that is, effects in opposite directions are far less likely and were thus not included 
in the simulation. At the same time, having only positive covariances exacerbates the 
identification problem of separating item specific covariance from between-group ability 
differences. 
We also varied the ability level of the group by imposing a low intraclass correlation 
coefficient (ICC) of .1 ( 2 0.1B

   and 2 0.9W
  ) in one condition and a high ICC of .5 

( 2 0.5B
   and 2 0.5W

  ) in another. A 50% variance in ability explained by the group 

can be considered a high, yet realistic amount. In PISA 2015, for example, the proportion 
of variance in science performance between schools was 30% on average across OECD 
countries, but more than 50% e.g. in Bulgaria, Hungary, and the Netherlands (OECD, 
2016).  

Data generation and data analysis 

The data was generated under the three-level GLMM model in the open source software 
R 3.4.0 (R Core Team, 2018). The number of replications in each condition was 100. 
For the GLMM approach, the data sets were analyzed using the lme4 package version 
1.1-13 (Bates et al., 2017). The package allows estimating the variance-covariance ma-
trix bΣ  for all items simultaneously. The dummy variables pgid  were group centered to 
ensure that between group variances remain at the person level and cannot be accounted 
for by the items (see Equation 11). To investigate whether the anchoring of items has an 
effect on the DIF detection, we analyzed the data sets (1) treating all items as random 
and (2) using the first six items as anchor items and all others as random (see Equation 
12). To speed up estimation, the tolerance for declaring convergence in the penalized 
iteratively weighted residual sum-of-squares was raised from the default of 1E-7 to 1E-3, 
the computation of the gradient and Hessian of nonlinear optimization solution was 
suppressed, and penalized iteratively reweighted least squares were used for optimization 
instead of the default Laplace approximation (using the options nAGQ=0, con-
trol=glmerControl(calc.derivs=F, tolPwrss=1e-3) in the glmer function). 
For the ML-LR approach, the data sets were first scaled under a unidimensional Rasch 
model using the R package TAM (Robitzsch, Kiefer, & Wu, 2017). In a second step, the 
Weighted Likelihood Estimates (WLE; Warm, 1989) from the Rasch scaling were used 
as ability estimate ̂  in the ML-LR analyses (see Equation 9). Note that one ML-LR was 
estimated for each item. 
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Results 

Each analysis with the full three-level GLMM took about 3.5 hours of computing time, 
analyses with six anchor items about 30 minutes each. The ML-LR analyses, including 
the estimation of the Rasch Model to obtain the WLEs, took about 30 minutes for the 
entire 100 replications. All model estimations converged within the default of 1000 
iterations. 

Recovery of RG-DIF 

The main criterion of interest is the RG-DIF, that is, the estimated 2
i , by the three 

different methods (1) three-level GLMM, (2) three-level GLMM with anchor items, and 
(3) ML-LR. Specifically, the bias of the estimated variances 2

i  (i.e., the estimated RG-
DIF minus the data generating value) is used to evaluate the methods. To display the 
results comprehensively, they are aggregated across five bundles of items. The items 
within each bundle have identical variances and correlations in each condition. Items 1-6 
have variances of zero in all conditions; the other item bundles were items 7-9, 10-12, 
13-15, and 16-18. Thus, the between-replication factors examined are correlation pattern 
and intraclass correlation, while the item bundle is a within-replication factor that con-
tains the information about the level of RG-DIF and the correlation of the RG-DIF with 
other items. Table 1 summarizes the properties of the items within the five bundles used 
to aggregate results. 

A first result was that the ICC of   had no effect on the estimated RG-DIF and the re-
spective bias. Results for the other factors are therefore pooled across the two conditions 
low and high ICC.  
Figure 1 summarizes the mean bias of 2

i  in each condition. The varying conditions 
were the correlation pattern, the item bundle (i.e., the item specific variances and group 
level correlations), and the estimation method. 

 

Table 1:  
RG-DIF ( 2

iσ ) and correlations of items within the five item bundles  
in the four correlation patterns. 

  Correlation of RG-DIF with other items in correlation patterns 
Items 2

i  Pattern 1 Pattern 2 Pattern 3 Pattern 4 

1-6 0.0 no no no no 
7-9 0.3 no pairwise within cluster 1 within cluster 1 

10-12 0.3 no pairwise no within cluster 2 
13-15 0.6 no pairwise within cluster 1 within cluster 1 
16-18 0.6 no pairwise no within cluster 2 
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Figure 2: 

Bias for estimated RG-DIF ( 2
iσ ) depending on the correlation pattern, the item bundle, and 

the estimation method. ML-LR = multilevel logistic regression; 3L GLMM three-level 
GLMM with freely estimated full covariance structure bΣ ; 3L GLMM + anch. = three-level 

GLMM with items 1-6 as anchor items. 

 
 
Results show that for uncorrelated RG-DIF (pattern 1), all methods work equally well, 
showing a bias very close to zero. With pairwise correlated RG-DIF (pattern 2), bias is 
still small. Yet, it is visible that for ML-LR and the full three-level GLMM, there is a 
slight positive bias for the variance of the item bundle with a true RG-DIF of zero and a 
slightly higher negative bias for the RG-DIF of the other items. When RG-DIF is corre-
lated within one bundle of items (pattern 3), there is a pronounced negative bias in RG-
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DIF estimated for the items with group level correlations (items 7-9 and 13-15) with 
ML-LR and the full three-level GLMM. At the same time, RG-DIF for items with zero 
DIF is overestimated. When all RG-DIF is correlated within item clusters (pattern 4), 
both ML-LR and full three-level GLMM are underestimating RG-DIF for the items with 
correlated RG-DIF and overestimating RG-DIF for the items with no actual group level 
variances. For patterns 3 and 4, bias in RG-DIF is larger with ML-LR than with the full 
three-level GLMM. The three-level GLMM with items 1-6 as anchor items performed 
equally well in all conditions, meaning that estimates of RG-DIF were not affected by 
group-level correlations. 

Recovery of correlation patterns 

The full three-level GLMM and the three-level GLMM with anchor items provide esti-
mates for the covariance matrix bΣ , allowing to examine the recovery of the correlations 
between DIF on the group level. Since those are not the focus of our study, these results 
are only briefly summarized. Generally, the recovery of the general RG-DIF correlation 
patterns was good for the items with RG-DIF (items 7 to 18), while the absolute size of 
the correlations was biased. With no or few correlations (patterns 1 and 2), the difference 
between the true and estimated correlations did not exceed absolute values of .1. With 
stronger true correlations, the estimated correlations had a negative bias of up to -.25 in 
pattern 4, with the largest bias occurring for true correlations of zero. Correlations for 
items 1-6, which had true variances and covariances of zero, were highly positively 
biased among those items (up to .77 in pattern 4), moderately positively biased (up to 
.24) between items 1-6 and items with correlated RG-DIF, and moderately negatively 
biased (up to -.24) between items 1-6 and items with uncorrelated RG-DIF. In the three-
level GLMM with anchor items, only the correlations between items with RG-DIF were 
estimated. Those were practically unbiased: Absolute differences between the true and 
estimated correlations never exceeded .03. 

Discussion 

The aim of this paper was to examine detection of uniform RG-DIF with different meth-
ods and under different conditions regarding the correlational structure of RG-DIF. We 
consider this structure an important yet neglected research topic, since the relation of 
DIF between items contains valuable information beyond that of individual items. In 
summary, RG-DIF can be recovered well by all investigated methods when there are no 
or only few correlations on the group level. If RG-DIF is correlated on the group level, 
however, correlated RG-DIF is underestimated while that of other items tends to be 
overestimated. This illustrates that DIF generally is a relative concept. Per definition, 
DIF means an item is functioning differently than the totality of items in a test or than a 
set of anchor items. If all items within a test had the same “DIF” across all groups, this 
variation in examinee responses would not be detected or interpreted as DIF but would 
be reflected in between-group differences in ability. The fact that (RG-) DIF is relative to 
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the behavior of the totality of the items demonstrates the importance of being aware that 
DIF is not only the property of a single item but also of relations between DIF across 
items. 
With respect to the examined methods, the full three-level GLMM performed better in 
recovering RG-DIF than ML-LR, but was still substantially affected by DIF correlated 
on the group level. It obviously remains challenging to separate between-group differ-
ences in the general ability dimension and the (residual) covariance bΣ . Using anchor 
items clearly offers a solution to this problem. However, while pure anchor items with 
zero RG-DIF existed and were known in the simulation, both is not necessarily the case 
in empirical applications. 

Limitations 

A general limitation of the methods under study is that the GLMM framework restricts 
the models to generalizations of the Rasch model. This obviously limits comparability 
with studies using other IRT models. We nevertheless consider the approach promising 
to study the structure of DIF across multiple groups due to flexibilities given within the 
GLMM framework. The models can, for instance, easily be extended to include predictor 
variables on the group, person, or item level.  
Furthermore, as in all simulation studies, the findings are limited by the specific condi-
tions realized in the study. We limited the design by keeping the number of groups, the 
group size, the number of items and the number of anchor items fixed. The bias observed 
in our study may decrease in absolute size with larger sample sizes, but we assume that 
the pattern of results, particularly the effect of group level correlations, remains the 
same. Another specific limitation is the restriction to positive residual correlations of 
RG-DIF, which we consider are more realistic to find in practice. For more heterogene-
ous correlations, particularly patterns with positive and negative dependencies cancelling 
each other out, the bias of estimated RG-DIF might be smaller. This is, however, merely 
a hypothesis, which we can neither deny nor confirm based on our study. 
A more severe limitation is the applied estimation technique. We decided to implement 
the model in a general multilevel software package and to adjust the estimation method 
to allow for a faster computation. It remains open to further investigation whether other 
estimation techniques (e.g., the default Laplace approximation implemented in lme4 or 
Bayesian estimation) that also allow for other ways of solving the identification problem 
when estimating a full covariance matrix perform better in recovering RG-DIF. Again, 
we do not assume the general pattern of results to be different, but the absolute size of 
the bias may differ between methods. 
The method under study is also clearly limited to moderate sample sizes because of its 
low computational power. It can be well implemented in evaluation studies with students 
in schools, and it seems particularly promising to model RG-DIF to gain insight about 
the correlational structure of DIF across items. It is, however, less easily applicable as a 
tool for DIF diagnosis in the context of large-scale assessments. If the correlational struc-
ture of DIF is of interest in contexts that involve large sample sizes, the method could be 
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applied to pilot studies with smaller samples or in (secondary) analyses with subsets of 
the complete data. A technically less elegant, yet practically easier-to-implement alterna-
tive could be to explore correlational structures of DIF in a two-stage approach. Group 
specific item difficulties can be estimated either in a multiple group model with fixed 
effects, or in separate analyses for each group. These estimated difficulties can be ana-
lyzed with respect to their correlational structure in a second step. Regardless of the 
specific methods, we consider the structure of DIF an important source of information 
that should be investigated in both evaluation studies and large-scale assessments. It can 
provide valuable information regarding the possible reasons for DIF that may not be 
detected by the mere inspection of individual items. 

Outlook 

In addition to addressing the limitations listed above, there are further possibilities ex-
tending the research on RG-DIF. First, we limited the modelling approach to uniform 
DIF within a GLMM framework. In a more general Bayesian random item effect frame-
work, non-uniform DIF (i.e., group level covariances of random item discriminations) 
could be addressed as well. Another possibly interesting extension is the use of link 
functions for ordinal data. This would allow examining RG-DIF in questionnaire data, an 
area where measurement invariance is also often an important issue. 
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