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Abstract 

Latent Dirichlet Allocation (LDA) is a probabilistic topic model that has been used as a tool to 

detect the latent thematic structure in a body of text. In the context of classroom testing, LDA 

has been used to detect the latent themes in examinees’ responses to constructed-response (CR) 

items. There is a growing body of evidence that latent themes detected by LDA have been found 

to reflect the kinds of reasoning examinees use in their responses to CR items. The use of the 

information from a model such as LDA requires that the model fit the data. To this end, a 

number of different model selection indices have been used with LDA to determine the best 

model fit. There does not as yet appear to be clear evidence, however, as to which of these 

indices is most accurate in conditions common with measurement data. In this study, we eval-

uated the performance of several model selection indices, including similarity measures and 

perplexity using 5-fold cross-validation. Their performance for model selection was compared 

from two commonly used algorithms for estimation of the LDA model, Gibbs sampling and 

variational expectation-maximization. Data were simulated with different numbers of topics, 

documents, average lengths of answers, and numbers of unique words typical of practical meas-

urement conditions. Results suggested that the average cosine similarity and perplexity using 

5-fold cross-validation were most accurate for model selection over the conditions simulated in 

this study.  

Keywords: latent Dirichlet allocation, model selection, perplexity, k-fold cross-validation, sim-

ilarity measures, Gibbs sampling, variational expectation maximization 
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Introduction 

Constructed-response (CR) items provide a useful format for measuring examinees’ 

inquiry skills on complex tasks (Attali, 2014). Typically, the text of answers to CR 

items is scored using a rubric and then the scores are analyzed. Algorithmic scoring 

has automated the scoring process, improving the speed at which test results can be 

returned to examinees (e.g., Lockwood, 2014). Responses to CR items also have been 

shown to provide information about examinees’ thinking and reasoning in addition to 

that provided by rubric-based scores (e.g., Buxton et al., 2014). Recent research on 

algorithmic analysis of the text of responses to CR items, for example, has suggested 

that information from topic modeling of the text of examinees’ responses can provide 

information that indicates the thinking and reasoning underlying both, correct and in-

correct answers in item response data (e.g., Copur-Gencturk et al., 2022). 

Topic models are a family of statistical algorithms, designed to detect clusters in a 

corpus of textual data, that are assumed to reflect the latent thematic structure in the 

corpus. Latent Dirichlet allocation (LDA; Blei et al., 2003) is a commonly used topic 

model in educational measurement due to its utility for providing additional infor-

mation about students beyond the scores from rubrics. For example, LDA has been 

shown to provide insight into students’ thinking and reasoning, when responding to 

CR items (Cardozo-Gaibisso et al., 2019; Wheeler, Raczynski, et al., 2022). These 

studies illustrate how LDA can be used to illuminate the writing strategies used by 

students. In addition, Shin et al. (2019) used LDA to identify students’ misconceptions 

in order to create item distractors and Basu et al. (2013) described a use of LDA for 

short answering grading of CR items. Besides providing information about scores, the 

LDA model has also been found to help improve the estimates of ability over tradi-

tional psychometric modeling of the rubric-based scores (Wheeler, Wang, et al., 

2022). 

LDA is a mixed membership model designed to detect latent clusters in a corpus of 

text. These clusters are assumed to reflect the latent thematic structure in the corpus 

(Wesslen, 2018). LDA, described more completely below, is typically used as an ex-

ploratory tool in order to detect the latent thematic structure in a corpus of textual data. 

Due to the exploratory nature of LDA, an important consideration in applying LDA 

is to select the model with the number of topics that best fits the data. A number of 

indices have been reported to inform topic model selection, including similarity indi-

ces and model perplexity using cross-validation (Arun et al., 2010; Cao et al., 2009; 

Deveaud et al., 2014). Although LDA has shown useful and promising results when 

analyzing students’ textual responses to CR items, there appears to be little con-

sistency across studies on model selection indices used. Additionally, there are limited 

studies that have investigated the performance of different model selection indices on 

corpora that contain data typically found in practical educational settings. That is, the 

textual responses to CR items are generally more constrained and contain fewer 

unique words due to the requirements indicated in the prompts, and the texts are often 

shorter in length. Kim et al. (2017), for example, used LDA to detect three latent topics 
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in the answers of 243 middle-grade students on a test of science inquiry knowledge. 

The average answer length was 98.6 words with the number of unique words as only 

532 words. 

In this study, the performances of three model selection indices were investigated and 

compared: the average cosine similarity (CS; Deveaud et al., 2014), the average Jen-

sen-Shannon divergence (JSD; Deveaud et al., 2014), and perplexity using 5-fold 

cross-validation (Refaeilzadeh et al., 2009). Specifically, these three model selection 

indices were studied using a simulation study that compared their accuracy in select-

ing the correct LDA model. The conditions of the simulation study were designed to 

reflect corpora that are often found in applications of LDA within educational con-

texts. Additionally, the accuracy of these model selection indices was compared using 

two estimator methods: Gibbs sampling and variational expectation maximization 

(VEM). 

 

Latent Dirichlet Allocation 

LDA is a probabilistic model designed to detect the latent topic structure present in a 

corpus of textual documents (Blei, 2012; Blei et al., 2003). LDA assumes that a corpus 

is a collection of 𝐷 documents and each document 𝑑 ∈ {1, … , 𝐷} is a collection of 𝑁𝑑   

observed words. The vocabulary is the set of V unique words that appear in the corpus. 

Document d is denoted by �⃗⃗� 𝑑  = [𝑤1, … , 𝑤𝑛𝑑
], where 𝑤𝑑,𝑛 for 𝑑 =  1, … , 𝐷 and 𝑛 =

 1, … , 𝑁𝑑 , represents the nth observed word in the dth document. 

Assuming 𝐾 topics a priori, LDA estimates three parameters: topics, topic propor-

tions, and topic assignments. Topics are assumed to follow a Dirichlet distribution 

over the 𝑉 words in the vocabulary. Topic 𝑘 ∈ {1, … , 𝐾} is denoted by �⃗� 𝑘  =
 [𝜙1, … , 𝜙𝑉 ] where 𝜙𝑘,𝑣, for 𝑘 =  1, … , 𝐾 and 𝑣 =  1, … , 𝑉 , is the probability of the 

vth word in the vocabulary occurring in the kth topic. Topic proportions are assumed 

to follow a Dirichlet distribution over the 𝐾 topics and indicate the mixture propor-

tions in a document. The topic proportions for document 𝑑 ∈ {1, … , 𝐷}  is denoted by 

𝜃 𝑑  = [𝜃1, … , 𝜃𝑘] where 𝜃𝑑,𝑘, for 𝑑 =  1, … , 𝐷 and 𝑘 =  1, … , 𝐾, is the proportion of 

the kth topic appearing in the dth document. Topic assignments are discrete values 

that indicate the topic membership of each word in a document. The topic assignments 

for document 𝑑 is denoted by 𝑧 𝑑  = [𝑧1, … , 𝑧𝑛𝑑
] where 𝑧𝑑,𝑛, for 𝑑 =  1, … , 𝐷 and 𝑛 =

 1, … , 𝑁𝑑, is the topic membership of the nth word in the dth document. 

As mentioned above, LDA assumes topics, �⃗�  and topic proportions, 𝜃 , follow a Di-

richlet distribution with hyperparameters 𝛽  and 𝛼 , respectively. Additionally, the topic 

assignments for document d are assumed to follow a multinomial distribution with 

parameters �⃗� 𝑘 and 𝑁𝑑 . LDA estimates these parameters using the observed words 

(Ponweiser, 2012). The conditional distribution for the topics, topic proportions, and 

topic assignments, given the observed words is (Blei, 2012): 
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𝑝(𝜃 1:𝐷 , �⃗� 1:𝐾 , 𝑧 1:𝐷| �⃗⃗� 1:𝐷) =  
𝑝(𝜃 1:𝐷, �⃗� 1:𝐾 , 𝑧 1:𝐷, �⃗⃗� 1:𝐷)

𝑝(�⃗⃗� 1:𝐷)
 

(1) 

 

where the numerator, 𝑝(𝜃 1:𝐷 , �⃗� 1:𝐾 , 𝑧 1:𝐷 , �⃗⃗� 1:𝐷), is the joint probability distribution of 

the latent and observed variables, and the denominator, 𝑝(�⃗⃗� 1:𝐷), is the marginal prob-

ability distribution of the observed words. The joint probability distribution for the 

latent and observed variables is: 

 

𝑝( 𝜃 1:𝐷 , �⃗� 1:𝐾 , 𝑧 1:𝐷 , �⃗⃗� 1:𝐷) =

 ∏ 𝑝(�⃗� 𝑘|𝛽 )
𝐾
𝑘=1 ∏ 𝑝(𝜃 𝑑|𝛼 ) (∏ 𝑝(𝑧𝑑,𝑛|𝜃 𝑑)

𝑁𝑑
𝑛=1 𝑝(𝑤𝑑,𝑛|�⃗� 𝑘=𝑧𝑑,𝑛

))𝐷
𝑑=1 , 

(2) 

 

where 𝑝(�⃗� 𝑘|𝛽 ) is the conditional probability distribution for topic 𝑘 with hyperpa-

rameter 𝛽 ; 𝑝(𝜃 𝑑|𝛼 ) is the conditional probability distribution of the topic proportions 

for document d with hyperparameter 𝛼 ; 𝑝(𝑧𝑑,𝑛|𝜃 𝑑) is the conditional probability dis-

tribution of the topic assignments for the nth word in the dth document; and 

𝑝(𝑤𝑑,𝑛|�⃗� 𝑘=𝑧𝑑,𝑛
) is the conditional probability distribution of the nth word in the nth 

document given the topic and topic assignment (Ponweiser, 2012). 

The LDA computes the marginal probability distribution of words by integrating over 

the topics, �⃗� 1:𝐾, and topic proportions, 𝜃 1:𝐷, and summing over the topic assignments, 

𝑧 1:𝐷, such that:  

𝑝( �⃗⃗� 1:𝐷)

=  ∫∫ 𝑝(𝜃 𝑑|𝛼 )
�⃗⃗� 

�⃗⃗⃗� 

 𝑝(�⃗� 𝑘|𝛽 )∏∑∏𝑝(𝑧𝑑,𝑛|𝜃 𝑑)

𝑁𝑑

𝑛=1

𝑝(𝑤𝑑,𝑛|�⃗� 𝑘=𝑧𝑑,𝑛
) 𝑑𝜃 𝑑𝜙.⃗⃗  ⃗

𝑧 1:𝐷

𝑁𝑑

𝑛=1

 

(3) 

 

Estimating Parameters 

Since summing over the combination of all the topic assignments is computationally 

intractable (Blei et al., 2003; Ponweiser, 2012), different methods have been proposed 

to estimate the LDA parameters, including the collapsed Gibbs sampling (Griffiths & 

Steyvers, 2004) estimation method and the variational expectation maximization 

(VEM; Blei et al., 2003) estimation method. 

Gibbs sampling is a Markov chain Monte Carlo algorithm (MCMC; Blei et al., 2003; 

Griffiths & Steyvers, 2004) that approximates a complex posterior distribution. The 

Gibbs sampling algorithm randomly selects samples from a conditional distribution 

of a lower dimension until the sampled values reach a stationary distribution (Steyvers 
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& Griffiths, 2007). The sampled values obtained at the beginning of the Markov chain 

tend to be a poor approximation of the posterior. Thus, a burn-in period is used in 

which the estimates from this period are discarded, and the subsequent estimates, i.e., 

after discarding the samples from the beginning of the Markov chain, are used to ob-

tain the posterior estimates. Although the Gibbs sampling does provide an accurate 

estimation method to obtain the posterior, it often requires a long process to reach 

convergence to the target distribution, therein requiring more time and computational 

resources to obtain the posterior (for more information, see Steyvers & Griffiths, 

2007). 

VEM, another algorithm sometimes used to estimate topic models, is a deterministic 

algorithm which uses optimization to approximate the posterior distribution. Instead 

of sampling the posterior, VEM approximates the lower bound of the log-likelihood. 

Thus, it is an estimation method that tends to be faster and less computationally inten-

sive than MCMC methods (Blei et al., 2017). VEM consists of two steps: the E-step, 

which finds the optimizing values of the topic proportions and topic assignments, and 

the M-step, which maximizes the lower bound on the log-likelihood by minimizing 

the Kullback-Liebler Divergence (KLD) between the approximation of the true and 

the estimated distributions (Taddy, 2012). Although VEM is often faster than Gibbs 

sampling, it may underestimate the variance of the posterior (Blei et al., 2017). 

There are various factors that influence the accuracy of the parameter estimates for 

the LDA model, including the estimation algorithm, the number of documents in the 

corpus, the number of unique words in the corpus (i.e., the vocabulary size), the length 

of each document (i.e., number of words in each document), and the selection of hy-

perparameters (Syed & Spruit, 2018; Wallach et al., 2009; Wheeler et al., 2021; 

Wheeler, Xiong, et al., 2022). 

When the text length is short, LDA has been reported to lack word co-occurrences 

sufficient for detecting latent clusters in the corpus (e.g., Chen et al., 2016; Hu et al., 

2009; Tang et al., 2014; Zuo et al., 2016). Recent evidence suggests, however, that 

LDA tends to improve its performance, when the distance among topics is large, that 

is, when topics are semantically different (Tang et al., 2014). In particular, the hy-

perparameters 𝛽  and 𝛼  have been found to influence the estimation of the topics and 

topic proportions (Ponweiser, 2012). When their values are equal to 1, the Dirichlet 

distribution resembles a uniform distribution, meaning that all words are equally 

likely to occur in each topic and topics are equally likely to appear in each document. 

When their values are less than 1, the Dirichlet distribution tends to be asymmetric, 

meaning a smaller subset of words are likely to occur in each topic and a smaller 

subset of topics are likely to appear in a document (Syed & Spruit, 2018; Wallach et 

al., 2009). 

Mardones-Segovia et al. (2022) compared the performance of Gibbs sampling and 

VEM estimation algorithms for LDA. The study used simulation conditions that re-

flected corpora sizes often found in educational testing data. Results suggested that 

the accuracy of the topic proportions was better when the set of hyperparameters was 
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𝛼 = 0.5 &  𝛽 = 0.05, that is, when topics were semantically different. This effect of 

the hyperparameters appeared to decrease as the length of each document increased. 

When the documents had a length of 20 words, the Gibbs sampling tended to estimate 

the topic proportions more accurately than using the VEM algorithm. However, for 

documents with at least 50 words, differences in the accuracy of the topics proportion 

were lower between both estimation methods. 

 

Model Selection Indices 

As noted earlier, the LDA model is an exploratory model where the number of topics 

is specified a priori (Blei et al., 2003). Therefore, the use of LDA often requires run-

ning a set of candidate models with differing the number of topics. Each candidate 

model is compared using a variety of model selection indices and a final model is 

chosen based on the performance of the model selection indices and the interpretabil-

ity of the final model (Cohen & Cho, 2017; Myung & Pitt, 2004). 

The objective of model selection indices is to help evaluate which candidate model 

produces the smallest discrepancy between the probability distributions of the true 

model and the estimated candidate model. There are a variety of model selection in-

dices used throughout the LDA literature, including information criterion indices 

(e.g., Lau et al., 2013; Schröder et al., 2017; Wang et al., 2016), topic coherence 

measures (e.g., Mimno et al., 2011; Newman et al., 2010; Nikolenko, 2016; Röder et 

al., 2015), similarity measures (e.g., Anderson et al., 2020; Roque et al., 2019), and 

perplexity (e.g., Blei et al., 2003; Vu et al., 2019). Each of these types of indices is 

described below. The information criterion indices and topic coherence measures are 

briefly described, and the similarity measures and perplexity measures are described 

in detail. 

 

Model Selection Based on Information Criterion Indices 

Information criterion (IC) indices are indicators of relative fit among candidate mod-

els (Kang & Cohen, 2007; Li et al., 2009; Sen & Cohen, 2019). That is, the fit of the 

models is compared only to those models in the set of candidate models. In this con-

text, the smallest value for an IC index represents the best fit among the set of candi-

date models. The IC indices involve two terms: a goodness of fit term that represents 

how well a model fits the data and a penalty term that indicates the complexity of the 

model. Commonly used information criterion indices for LDA include the Akaike In-

formation Criterion (AIC; Akaike, 1998), the Bayesian Information Criterion (BIC; 

Raftery, 1995), the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002), 

and the sample size adjusted BIC (SABIC; Sclove, 1987). 
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Model Selection Based on Topic Coherence Measures 

Topic coherence measures were developed specifically for topic models in order to 

address model selection issues. These measures select the candidate model in which 

individual topics are more semantically coherent and exclusive (Boyd-Graber et al., 

2014; Chang et al., 2009). There are many topic coherence measures used for topic 

models (see Nikolenko, 2016; Röder et al., 2015). A few commonly used topic coher-

ence measures include the semantic coherence measure (SC; Mimno et al., 2011), the 

pairwise pointwise mutual information metric (PMI; Newman et al., 2010), and the 

frequency and exclusivity metric (FREX; Bischof & Airoldi, 2012). 

 

Model Selection Based on Similarity Measures 

The use of similarity measures assumes that the best-fitting topic model is the one that 

produces high within-topics similarity and low between-topics similarity. Commonly 

used similarity-based model selection methods include the methods that utilize the 

cosine similarity measure (CS; Cao et al., 2009) and the Jensen-Shannon Divergence 

measure (JSD; Deveaud et al., 2014). 

Cao et al. (2009) proposed selecting the best topic model by computing the average 

cosine similarity between every possible combination of topics. This method first re-

quires calculating the cosine similarity between each possible combination of topics. 

The cosine similarity between two topics, Topic i and Topic j, where 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈
{1, … , 𝐾}, is given by: 

𝐶𝑆(𝛽 𝑖 , 𝛽 𝑗 ) =  
∑ 𝛽𝑖,𝑣𝛽𝑗,𝑣

𝑉
𝑣=1

√∑ (𝛽𝑖,𝑣)
2𝑉

𝑣=1
√∑ (𝛽𝑗,𝑣)

2𝑉
𝑣=1

 
(4) 

  

where 𝛽𝑖,𝑣and 𝛽𝑗,𝑣are the probabilities of the vth word in the vocabulary occurring in 

the ith and jth topics, respectively. Cosine similarity is a type of correlation measure, 

therefore, a cosine similarity closer to 1 indicates that two topics are highly similar 

and a cosine similarity closer to 0 indicates that two topics are independent. Once the 

cosine similarity between each topic within a candidate model is calculated, the model 

selection method computes the average cosine similarity, such that:  

𝐶𝑆̅̅̅̅ =  
∑ ∑ 𝐶𝑆(𝛽 𝑖 , 𝛽 𝑗  )

𝐾
𝑗=𝑖+1

𝐾
𝑖=1

𝐾 (
𝐾 − 1

2
)

 
(5) 

  

where 𝐾 (
𝐾−1

2
) is the number of combinations of topics. A smaller average cosine 

similarity value indicates that the topics are more dissimilar and independent whereas 

a larger average cosine similarity value indicates that the topics are more similar and 
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correlated. Cao et al. (2009) suggests that the best-fitting topic model is the one that 

minimizes the average cosine similarity, suggesting that the topics are more stable. 

Deveaud et al. (2014) proposed a model selection method that derives the best-fitting 

model through topic distributions. This model selection method uses the JSD measure 

to estimate the optimal number of topics. The JSD measure is a symmetric version of 

KLD that evaluates the similarity of pairs of words within topics, as shown by: 

𝐽𝑆𝐷 =
1

2
∑ 𝑝(𝜙𝑘,𝑣) × log (

𝑝(𝜙𝑘,𝑣)

𝑝(𝜙𝑘′,𝑣)
)

𝑣 ∈ 𝑉𝑘∩𝑉𝑘
′

+
1

2
∑ 𝑝(𝜙𝑘′,𝑣) × log (

𝑝(𝜙𝑘′,𝑣)

𝑝(𝜙𝑘,𝑣)
) .

𝑣 ∈ 𝑉𝑘∩𝑉𝑘
′

 

(6) 

  

  

When its value approaches zero, the more similar are the words. Conversely, the closer 

its value to one, the more dissimilar are the words. Deveaud et al. (2014) expanded 

this for calculating the semantic similarity of words between topics. This metric re-

quires computing the average JSD measure between all possible pairs of topics. There-

fore, assume that Tk is the set of K candidate topics. Then, the best candidate model can 

be obtained as follows: 

𝐽𝑆𝐷̅̅ ̅̅ ̅ =
1

𝐾(𝐾 − 1)
∑ 𝐽𝑆𝐷.

(𝑘,𝑘′)∈ 𝑇𝑘

 
(7) 

  

  

In this context, the model with the more distinguishable terms between topics, and the 

more coherent words within topics, is the most accurate topic structure. In this way, 

the model that maximizes Equation 7 represents the best candidate model. 

 

Model Selection based on Perplexity Measures 

Perplexity is another model selection technique that has vastly been applied in the 

framework of machine learning (Ding et al., 2018). It is a statistical method that eval-

uates how well a model can predict a new corpus of documents. In this regard, the 

candidate model with the lower perplexity value represents the best topic structure 

(Blei et al., 2003). Formally, perplexity is defined as the probability of the observed 

words in a document, �⃗⃗� 𝑑, normalized by the total number of words in the document, 

Nd, such that: 
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𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑒𝑥𝑝 {− 
∑ log 𝑝(�⃗⃗� 𝑑)

𝐷
𝑑=1

∑ 𝑁𝑑
𝐷
𝑑=1

} 
(8) 

  

In general, perplexity is evaluated using a cross-validation technique (CV; Neisha-

bouri & Desmarais, 2020). CV is a re-sampling method that evaluates the generaliza-

bility of a model on a training set and a test set (Berrar, 2019). There are different 

strategies to split the corpus of documents. A commonly method in machine learning 

is the k-fold CV. This method randomly splits the original corpus into k folds or sub-

sets. Then, CV fits a set of candidates LDA models using a 𝑘 − 1 folds as a training 

set and uses the remaining subset to evaluate the performance of those LDA models 

in an unseen corpus (Refaeilzadeh et al., 2009). 

 

Method Design of Simulation Study 

The simulation study investigates the performance of model selection indices for LDA 

under practical testing conditions. Practical testing conditions are defined by proper-

ties of corpora often found in applications of LDA to educational data. The corpora 

factors manipulated in the simulation include the number of documents in the corpus 

(four levels: 𝐷 = 200, 𝐷 = 300, 𝐷 = 500, 𝐷 = 1000), the number of unique words 

in the corpus (i.e., vocabulary size; two levels: 𝑉 = 350 and 𝑉 = 650), the average 

number of words in each document (i.e., average document length; five levels: 𝜆 =
 𝑁1:𝐷 = 5, 𝜆 =  𝑁1:𝐷 = 20, 𝜆 =  𝑁1:𝐷 = 50, 𝜆 =  𝑁1:𝐷 = 100, and 𝜆 =  𝑁1:𝐷 =
200), and the number of topics (three levels: 𝐾 = 3, 𝐾 = 4, and 𝐾 = 5). 

The levels for the number of documents in the corpus were selected to reflect analysis 

of responses at the individual school and school district levels, that is, 𝐷 =
200, 300 represents the number of students at the school level whereas 𝐷 =
500, 1000 represents the number of students at the school district level. The levels for 

the average number of words in each document were selected to reflect the different 

types of CR items that can be analyzed with LDA. That is, 𝜆 =  𝑁1:𝐷 = 5, 20 repre-

sents short responses (e.g., one-line responses on an assessment), and 𝜆 =  𝑁1:𝐷 =
50, 100, 200 represents long responses (e.g., one-paragraph or one-page responses on 

an assessment). The number of unique words in the corpus and the number of topics 

were selected based on previous applications of LDA to educational data (e.g., Buxton 

et al., 2014; Cardozo-Gaibisso et al., 2019; Wheeler, Engelhard, et al., 2022). 

In addition to the different corpora factors, the study also investigated two different 

estimation algorithms (Gibbs sampling and VEM) and three hyperparameters for 𝛼  

(three levels: 𝛼 = 0.5, 𝛼 = 1, 𝛼 =
1

𝐾
, where K is the number of topics). Mardones-

Segovia et al. (2022) found that LDA accurately estimated the topics regardless of the 

𝛽  values or the estimation algorithm used. Therefore, 𝛽  values were not manipulated. 

All factors were crossed with 50 replications of each condition. 
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Data Generation 

The data used in the simulation study were generated according to the generative pro-

cess described in Blei et al. (2003). To generate the topics, this study utilized the mean 

of a topic word distribution from a real data set with conditions like those in this sim-

ulation study (𝛽 = 0.004). The data were generated as follows: 

1. Generate each topic, �⃗� 𝑘 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽 ) ∀ 𝑘 = 1,… , 𝐾 

2. Generate topic proportions for each document, 𝜃 𝑑 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 ) ∀ 𝑑 =
1,… , 𝐷 

3. Generate the observed words for each document  𝑑 = 1,… , 𝐷: 

i. Choose the number of words in the document,  𝑁𝑑 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

ii. For each word in the document  𝑛 = 1,… ,𝑁𝑑: 

• Select the topic member of the word,  𝑧𝑛 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙( 𝜃 𝑑) 

• Select the observed word, 𝑤𝑛 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛽 𝑘=𝑧𝑛
)  

 

The generated data were then used to estimate a variety of candidate models with 

different numbers of topics. See the Appendix for visualizing the R functions used to 

simulate the data. 

 

Parameter Estimation 

For each condition in the simulation study, nine candidate LDA models were esti-

mated, 𝑇𝐾 = {2,3, … , 10} using the Gibbs sampling and VEM algorithms as imple-

mented in the R package topicmodels (Grün & Hornik, 2011). In the case of the Gibbs 

sampling, LDA estimated the parameters using three sets of hyperparameters: 𝛼 =

0.5 &  𝛽 = 0.05, 𝛼 = 1 &  𝛽 = 1, and 𝛼 =
1

𝐾
 &  𝛽 = 1, where K is the number of top-

ics. Samples at the beginning of a Markov chain were discarded as burn-in, and pa-

rameters were estimated from the posterior distribution using the post-burn-in itera-

tions. For this purpose, the first 10,000 iterations were discarded as burn-in, and the 

next 5,000 iterations were used to estimate the LDA parameters from the posterior 

distribution. Two approaches were used to estimate the VEM algorithm: (1) setting 

the 𝛼  hyperparameter to the same values used for generating the data, and (2) setting 

the 𝛼   hyperparameter to 𝛼 =
50

𝐾
 as suggested by Griffiths and Steyvers (2004). Both 

VEM approaches freely estimated the hyperparameter 𝛽 . See the Appendix for an R 

code example for estimating LDA models using both estimation methods. 
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Label Switching 

Label switching is an important concept to address when estimating a mixture model. 

For LDA, label switching occurs when a topic changes its membership association 

label within iterations in a single chain or between chains during the estimation pro-

cedure (Cho et al., 2013; Stephens, 2000). Addressing label switching is important for 

evaluating parameter recovery in simulation studies because the generating topic la-

bels need not be the same as the estimated topic labels. For example, Topic 1 in the 

generating model may not be Topic 1 in the estimated model because the topic labels 

from the estimated model depend on the initialization of the estimation algorithm. 

Therefore, label switching identifies which topics from the generating model belong 

to which topics in the estimated model. In this study, label switching was detected by 

computing the cosine similarity between the generated and estimated LDA parameters 

using the lsa R package (Wild, 2020). A cosine similarity value close to one suggests 

that the generating topic is associated with the estimated topic, whereas a value close 

to zero suggests that the generating topic is not associated with the estimated topic. In 

this study, we were able to successfully identify which generating topics were associ-

ated with which estimated topics, thus allowing us to evaluate parameter recovery. 

 

Model Selection Indices 

This study investigated the performance of the cosine similarity measure presented in 

Equation (5), the JSD measure presented in Equation (6), and the perplexity measure 

presented in Equation (8). The similarity measures were obtained using the R package 

ldatuning (Nikita, 2019) and the perplexity measure was obtained using the R package 

topicmodels (Grün & Hornik, 2011). 

In the context of machine learning, researchers tend to calculate perplexity using k-

fold CV (Xiong et al., 2020). This study evaluated the performance of perplexity using 

5-fold CV (perplexity 5-CV; Hasan et al., 2021; Refaeilzadeh et al., 2009). Perplexity 

5-CV fits the set of candidate models five times. Each time, it chooses 𝑘 − 1 subsets 

of the document-term matrix and trains the LDA models. Next, perplexity 5-CV tests 

the previous LDA models using the remaining subset. As the topics were given by 

these previously fitted models, LDA only estimates the topic distribution. Finally, this 

study computed perplexity for each k-fold and candidate model. For interpretation 

purposes, this study computed the average of the five perplexity scores. The model 

with the lowest average perplexity was taken as the best candidate LDA model. 

The accuracy for model selection of the similarity measures and perplexity were de-

termined by counting the number of times that each indicator selected the correct topic 

model across replications. A frequency of zero indicates that the model selection index 

did not select the simulated topic model in any of the 50 replications, while a fre-

quency of 50 indicates that the model selection index selected the generated topic 

model in each replication. 
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Recovery of Model Parameters 

The performance of an estimated model can be evaluated by comparing the generating 

parameters to the estimated parameters. One such metric is the root mean squared 

error (RMSE) that measures the error between the estimated parameters and the gen-

erating parameters. A smaller value indicates that the estimated parameters are close 

to the generating parameters, and the model accurately estimated the parameters. A 

larger value indicates that the estimated parameters are not close to the generating 

parameters, and the model did not accurately estimate the parameters (Hübner & 

Pelzer, 2020). 

In this study the RMSE was calculated between the estimated topics and the generat-

ing topics, and between the estimated topic proportions and the generating topic pro-

portions. The RMSE for topic K is calculated by: 

𝑅𝑀𝑆𝐸(�⃗� 𝑘) = √∑ (�̂�𝑘,𝑣 − 𝜙𝑘,𝑣)
2𝑉

𝑣=1

𝑉
, 

(9) 

  

where �̂�𝑘,𝑣 is the estimated probability of the vth word in the vocabulary to occur in 

the kth topic and 𝜙𝑘,𝑣 is the true probability of the vth word in the vocabular to occur 

in the kth topic. The RMSE for the topic proportions for document d is calculated by:

  

𝑅𝑀𝑆𝐸(𝜃 𝑑) = √∑ (𝜃𝑑,𝑘 − 𝜃𝑑,𝑘)
2𝐾

𝑘=1

𝐾
, 

(10) 

 

where �̂�𝑑,𝑘  is the estimated proportion of the kth topic appearing in the dth document 

and 𝜃𝑑,𝑘  is the true proportion of the kth topic appearing in the dth document. 

The average RMSE values for each topic and each topic proportion were calculated 

for each condition within a replication, indicating the average RMSE value calculated 

for the recovery of the topic parameters and the average RMSE value calculated for 

the recovery of the topic proportions. These two values indicate the overall perfor-

mance of the estimated model for each condition. Additionally, the average RMSE 

are reported across all 50 replications for each condition. 
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Results 

Recovery of Parameters  

Recovery results for the topic parameters are plotted in Figure 1 and the recovery for 

the topic proportions parameters are plotted in Figures 2, 3, 4. Generally, the recovery 

of the topics and topic proportions appeared to vary mainly by the average answer 

length, the hyperparameters, and the type of estimation algorithm. Regardless of the 

vocabulary of unique words and the document size, RMSE values tended to be higher 

for corpora with average document lengths of 5 and 20 words (i.e., 𝜆 = 5 and 𝜆 =
20). However, as the average document lengths increased, the variability between the 

estimated and generated parameters tended to become smaller. Further, the influence 

of average answer length on the recovery of the topic proportion appeared to decrease 

when LDA estimated the parameters using 𝛼 = 0.5 &  𝛽 = 0.05, regardless of the es-

timation algorithm used. 

In addition, the variability between the estimated and generated parameters tended to 

be smaller for parameters estimated using the Gibbs sampling than using VEM. In 

particular, RMSE values were higher, when 𝛼  was 
50

𝐾
 and corpora had a very small 

average answer length. However, differences in RMSE values between both algo-

rithms tended to be minimal for corpora with average document lengths of 50, 100, 

and 200 words. 
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Figure 1 

RMSE results for topics for data simulated using 𝛼 = 0.5 

 

Note:  RMSE = Root Mean Squared Error, 𝐷 = number of doc number of documents in corpus, 𝑉 = vo-
cabulary of unique words in the corpus (i.e., number of words in the vocabulary), 𝐾 =  true topic structure, 
Gibbs = Gibbs sampling algorithm, VEM = variational-expectation maximization algorithm, 𝛼 = 0.5 hy-

perparameter for topic proportions used to generate the data, 𝛼 =
50

𝐾
 hyperparameter for topic proportions 

used to estimate the model, and 𝛽 = hyperparameter for topics used to estimate the model.  
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Figure 2 

RMSE results for topic proportion for data simulated using 𝛼 = 0.5 

 
 

Note:  RMSE = Root Mean Squared Error, 𝐷 = number of doc number of documents in corpus, 𝑉 = vo-
cabulary of unique words in the corpus (i.e., number of words in the vocabulary), 𝐾 =  true topic structure, 
Gibbs = Gibbs sampling algorithm, VEM = variational-expectation maximization algorithm, 𝛼 = 0.5 hy-

perparameter for topic proportions used to generate the data, 𝛼 =
50

𝐾
 hyperparameter for topic proportions 

used to estimate the model, and 𝛽 = hyperparameter for topics used to estimate the model.  
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Figure 3 

RMSE results for topic proportion for data simulated using 𝛼 =
1

𝐾
 

 

Note:  RMSE = Root Mean Squared Error, 𝐷 = number of doc number of documents in corpus, 𝑉 = vo-
cabulary of unique words in the corpus (i.e., number of words in the vocabulary), 𝐾 =  true topic structure, 

Gibbs = Gibbs sampling algorithm, VEM = variational-expectation maximization algorithm, 𝛼 =
1

𝐾
 hy-

perparameter for topic proportions used to generate the data, 𝛼 =
50

𝐾
 hyperparameter for topic proportions 

used to estimate the model, and 𝛽 = hyperparameter for topics used to estimate the model.  
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Figure 4 

RMSE results for topic proportion for data simulated using 𝛼 = 1 

 

Note:  RMSE = Root Mean Squared Error, 𝐷 = number of doc number of documents in corpus, 𝑉 = vo-
cabulary of unique words in the corpus (i.e., number of words in the vocabulary), 𝐾 =  true topic structure, 
Gibbs = Gibbs sampling algorithm, VEM = variational-expectation maximization algorithm, 𝛼 = 1 hy-

perparameter for topic proportions used to generate the data, 𝛼 =
50

𝐾
 hyperparameter for topic proportions 

used to estimate the model, and 𝛽 = hyperparameter for topics used to estimate the model.  

 

 

Model Selection 

Figures 5, 6, 7, 8, 9, and 10 show the number of correct model selections for each of 

the three indices for each algorithm and testing condition. Results suggested that the 

performance of similarity measures and perplexity using 5-CV vary for the estimation 

algorithm, the average document lengths (i.e., 𝜆 values), the number of topics, and the 

corpus size. 
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Figure 5 

Performance model selection indices for data simulated using 𝛼 = 0.5 and 𝑉 = 350  

 

Note:  𝐷 = number of doc number of documents in corpus, 𝑉 = vocabulary of unique words in the corpus 
(i.e., number of words in the vocabulary), 𝐾 =  true topic structure, number of replications = 50, perplexity 
5-CV = perplexity using 5-fold cross-validation, CS = average cosine similarity, JSD = average Jensen-

Shannon divergence, Gibbs = Gibbs sampling algorithm estimating LDA with 𝛼 = 0.5 & 𝛽 =  0.05,  VEM 

= variational-expectation maximization algorithm estimating LDA with 𝛼 = 0.5 & 𝛽 =  0.05, VEM free = 

variational-expectation maximization algorithm estimating LDA with 𝛼 =
50

𝐾
 & 𝛽 = 𝑓𝑟𝑒𝑒. 
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Figure 6 

Performance model selection indices for data simulated using 𝛼 = 0.5 and 𝑉 = 650  

 

Note:  𝐷 = number of doc number of documents in corpus, 𝑉 = vocabulary of unique words in the corpus 
(i.e., number of words in the vocabulary), 𝐾 =  true topic structure, number of replications = 50, perplexity 
5-CV = perplexity using 5-fold cross-validation, CS = average cosine similarity, JSD = average Jensen-

Shannon divergence, Gibbs = Gibbs sampling algorithm estimating LDA with 𝛼 = 0.5 & 𝛽 =  0.05,  VEM 

= variational-expectation maximization algorithm estimating LDA with 𝛼 = 0.5 & 𝛽 =  0.05, VEM free = 

variational-expectation maximization algorithm estimating LDA with 𝛼 =
50

𝐾
 & 𝛽 = 𝑓𝑟𝑒𝑒. 
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Figure 7 

Performance model selection indices for data simulated using 𝛼 = 1 and 𝑉 = 350  

 

Note:  𝐷 = number of doc number of documents in corpus, 𝑉 = vocabulary of unique words in the corpus 
(i.e., number of words in the vocabulary), 𝐾 =  true topic structure, number of replications = 50, perplexity 
5-CV = perplexity using 5-fold cross-validation, CS = average cosine similarity, JSD = average Jensen-

Shannon divergence, Gibbs = Gibbs sampling algorithm estimating LDA with 𝛼 = 1 & 𝛽 =  1,  VEM = 

variational-expectation maximization algorithm estimating LDA with 𝛼 = 1 & 𝛽 =  1, VEM free = varia-

tional-expectation maximization algorithm estimating LDA with 𝛼 =
50

𝐾
 & 𝛽 = 𝑓𝑟𝑒𝑒. 
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Figure 8 

Performance model selection indices for data simulated using 𝛼 = 1 and 𝑉 = 650  

 

Note:  𝐷 = number of doc number of documents in corpus, 𝑉 = vocabulary of unique words in the corpus 
(i.e., number of words in the vocabulary), 𝐾 =  true topic structure, number of replications = 50, perplexity 
5-CV = perplexity using 5-fold cross-validation, CS = average cosine similarity, JSD = average Jensen-

Shannon divergence, Gibbs = Gibbs sampling algorithm estimating LDA with 𝛼 = 1 & 𝛽 =  1,  VEM = 

variational-expectation maximization algorithm estimating LDA with 𝛼 = 1 & 𝛽 =  1, VEM free = varia-

tional-expectation maximization algorithm estimating LDA with 𝛼 =
50

𝐾
 & 𝛽 = 𝑓𝑟𝑒𝑒. 
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Figure 9 

Performance model selection indices for data simulated using 𝛼 =
1

𝑘
  and  𝑉 = 350  

 

Note:  𝐷 = number of doc number of documents in corpus, 𝑉 = vocabulary of unique words in the corpus 
(i.e., number of words in the vocabulary), 𝐾 =  true topic structure, number of replications = 50, perplexity 
5-CV = perplexity using 5-fold cross-validation, CS = average cosine similarity, JSD = average Jensen-

Shannon divergence, Gibbs = Gibbs sampling algorithm estimating LDA with 𝛼 =
1

𝐾
 &  𝛽 =  1,  VEM = 

variational-expectation maximization algorithm estimating LDA with 𝛼 =
1

𝐾
 & 𝛽 =  1, VEM free = varia-

tional-expectation maximization algorithm estimating LDA with 𝛼 =
50

𝐾
 & 𝛽 = 𝑓𝑟𝑒𝑒. 
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Figure 10 

Performance model selection indices for data simulated using 𝛼 =
1

𝑘
  and  𝑉 = 650  

 

Note:  𝐷 = number of doc number of documents in corpus, 𝑉 = vocabulary of unique words in the corpus 
(i.e., number of words in the vocabulary), 𝐾 =  true topic structure, number of replications = 50, perplexity 
5-CV = perplexity using 5-fold cross-validation, CS = average cosine similarity, JSD = average Jensen-

Shannon divergence, Gibbs = Gibbs sampling algorithm estimating LDA with 𝛼 =
1

𝐾
 &  𝛽 =  1,  VEM = 

variational-expectation maximization algorithm estimating LDA with 𝛼 =
1

𝐾
 & 𝛽 =  1, VEM free = varia-

tional-expectation maximization algorithm estimating LDA with 𝛼 =
50

𝐾
 & 𝛽 = 𝑓𝑟𝑒𝑒. 
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Results for Gibbs sampling 

When LDA estimated the parameters using the Gibbs sampling algorithm, perplexity 

5-CV and 𝐶𝑆̅̅̅̅  appeared to be better for model selection than 𝐽𝑆𝐷̅̅ ̅̅ ̅. The accuracy for 

model selection of these three indices seemed to be influenced by the set of hyperpa-

rameters, the average document length, and on some occasions, the number of topics. 

Below we explain the performance of each model selection index under the tested 

conditions. 

Overall, perplexity 5-CV tended to be more accurate for model selection when LDA 

parameters were estimated using 𝛼 =
1

𝐾
 &  𝛽 = 1 and 𝛼 = 1 &  𝛽 = 1. Under both 

sets of hyperparameters, perplexity 5-CV accuracy increased as the average document 

length increased. For instance, on average, perplexity 5-CV selected the simulated 

topic model on 73.2% (sd = 38.5%) of the replications for corpora with 𝜆 = 20. How-

ever, its performance improved to an average of 93.5% (sd = 14.5%), 98.4% (sd = 

4.04%), and 99.8% (sd = 0.57%) of the replications for corpora with 𝜆 = 50, 𝜆 =
100, 𝜆 = 200. Further, the results showed that the larger the number of topics, the 

worse the performance was. For example, on average, perplexity 5-CV detected a 3-

topic model in 91.9% (sd = 20.3%) of the replications but decreased to 73% (sd = 

30.7%) for a 5-topic model using 𝛼 =
1

𝐾
 &  𝛽 = 1. 

The effect of the set of hyperparameters, the average document length, and the number 

of topics seemed to decrease considerably for corpora containing 500 and 1,000 doc-

uments. On average, perplexity 5-CV increased its performance for detecting the sim-

ulated topic model to 94.7% (sd = 10.4%) and 87.7% (sd = 12.7%) replications for 

LDA models estimated using 𝛼 = 1 &  𝛽 = 1 and 𝛼 =
1

𝐾
 &  𝛽 = 1, respectively. This 

implies that perplexity 5-CV was more useful for model selection for corpora with an 

average document length of at least 20 words. No apparent differences were found for 

the shortest average length of documents. 

Additionally, the results showed that perplexity 5-CV had the opposite performance 

for model selection when LDA was estimated using 𝛼 = 0.5 &  𝛽 = 0.05. In this case, 

perplexity 5-CV detected the generated number of topics in 92.6% (sd = 5.48%) of the 

replications for corpora with 𝜆 = 5. Accuracy of perplexity 5-CV decreased to, how-

ever, 33.3% (sd = 20%) replications for corpora with 𝜆 = 200. This suggested that 

perplexity 5-CV was more accurate in detecting the simulated topic structure for cor-

pora containing shorter document lengths when LDA was estimated using 𝛼 =

0.5 &  𝛽 = 0.05. 

The utility for model selection of both similarity measures appeared to be good across 

conditions for parameters estimated using 𝛼 = 0.5 &  𝛽 = 0.05. For instance, CS se-

lected the simulated number of topics, on average, in 89% (sd = 4.52%) of the repli-

cations for corpora containing 200 documents with an average document length of 5 

words (i.e., 𝜆 = 5). Similarly, 𝐽𝑆𝐷̅̅ ̅̅ ̅ selected the simulated number of topics, on 
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average, in 78.3% (sd = 14.4%) of the replications. When LDA was estimated using 

𝛼 = 1 &  𝛽 = 1, the accuracy of both 𝐶𝑆̅̅̅̅  and 𝐽𝑆𝐷̅̅ ̅̅ ̅decreased for detecting the gener-

ated number of topics for corpora with 𝜆 = 5 and 𝜆 = 20. For example, on average, 

𝐶𝑆̅̅̅̅  and 𝐽𝑆𝐷̅̅ ̅̅ ̅ selected the generated topic model in 59.2% (sd = 40.8%) and 40.9% (sd 

= 39.4%) of the replications, respectively. However, as the number of documents in-

creased, the effect of the average answer length seemed to decrease. 

For LDA models estimated using 𝛼 = 1/𝐾 &  𝛽 = 1, 𝐶𝑆̅̅̅̅  tended to perform better as, 

for example, selected the simulated number of topics for corpora containing at least 

500 documents with an average document length of 20 words and whose topic struc-

ture was 3 or 4-topics. Additionally, the results of this study indicated that it was pos-

sible for 𝐶𝑆̅̅̅̅   to detect the best topic structure with corpora with 𝜆 = 5 as long as they 

included 1,000 documents. 

 

Results for VEM estimation 

When LDA parameters were estimated using the VEM algorithm, perplexity 5-CV 

and 𝐶𝑆̅̅̅̅  tended to be more useful for model selection than 𝐽𝑆𝐷̅̅ ̅̅ ̅. The performance for 

model selection of these three indices was also influenced by the set of hyperparame-

ters, the average document length, and in some cases, the number of topics. The per-

formance of each model selection index under the tested conditions is described be-

low. 

In general, the performance of perplexity 5-CV tended to be better, when LDA pa-

rameters were estimated using the same hyperparameter 𝛼 used to generate the data. 

In such a case, the accuracy of perplexity 5-CV for model selection appeared to vary 

across the average answer length, the number of topics, and to a lesser degree, the set 

of hyperparameters. For example, on average, perplexity 5-CV recovered a 3-topic 

model almost perfectly, regardless of the set of hyperparameters, using corpora with 

𝜆 = 5. However, the accuracies of perplexity 5-CV to recover a 5-topic model de-

creased to 71.2% (sd = 8.41%), 62.5% (sd = 13.6%), and 40.5% (sd = 8.41%) when 

LDA estimated the parameters using 𝛼 = 1/𝐾 &  𝛽 = 1, 𝛼 = 0.5 &  𝛽 = 0.05, and 

𝛼 = 1 &  𝛽 = 1, respectively. No apparent differences were found using corpora with 

various document or vocabulary sizes. 

The accuracy of perplexity 5-CV for model selection decreased for LDA models es-

timated using 𝛼 =
50

𝐾
 &  𝛽 = 𝑓𝑟𝑒𝑒. The performance of perplexity 5-CV tended to be 

better across conditions for data simulated using 𝛼 =
1

𝐾
. For example, on average, 

perplexity 5-CV detected the simulated topic model in 95.9% (sd = 2.67%) and 97.6% 

(sd = 3.01%) of the replications for corpora with 𝜆 = 20 and 𝜆 = 200, respectively. 

However, it decreased for corpora with 𝜆 = 5. Similar results were obtained for data 

generated using 𝛼 = 0.5 as perplexity 5-CV tended to be more accurate in detecting 

the simulated number of topics for corpora containing average document lengths of at 



C. Mardones-Segovia, J. M. Wheeler, H.-J. Choi, S. Wang, A. S. Cohen 

 

28 

least 20 words (𝜆 = 20). Further, its performance seemed to be better for detecting a 

3- or 4-topic model than a 5-topic model. For instance, on average, perplexity 5-CV 

was accurate for selecting 3-topics in 83.2% (sd = 8.48%), but it decreased to 64.2% 

(sd = 16.5%) of the replications for detecting a 5-topic models. Additionally, for data 

generated using 𝛼 = 1, perplexity 5-CV performed well for model selection for cor-

pora with average document lengths of 50, 100, or 200 words. 

In general, accuracy of similarity indices appeared to decrease for model selection for 

LDA models estimated using the VEM algorithm. Similar to perplexity 5-CV, 𝐶𝑆̅̅̅̅  and 

𝐽𝑆𝐷̅̅ ̅̅ ̅ were more useful for model selection when LDA used the same 𝛼 value to gen-

erate and estimate the parameters. When this was the case, 𝐶𝑆̅̅̅̅  provided substantially 

better results than 𝐽𝑆𝐷̅̅ ̅̅ ̅. The performance of 𝐶𝑆̅̅̅̅  in detecting the simulated topic model 

varied according to the average answer length, the number of topics, and to a lesser 

extent, the set of hyperparameters. For instance, on average, 𝐶𝑆̅̅̅̅  was useful for model 

selection in 57.1% (sd = 22.4 %), 88.3% (sd = 8.36%), 92.3% (sd = 6.93%), 93.4% (sd 

= 6.63%), and 92.8% (sd = 6.91%) of the replications for 𝜆 = 5, 𝜆 = 20, 𝜆 = 100, and 

𝜆 = 200, respectively. These results suggest that 𝐶𝑆̅̅̅̅  performed better on average for 

corpora with an average document length of at least 20 words. Although it appeared 

to be more difficult for 𝐶𝑆̅̅̅̅  to select the simulated number of topics with corpora con-

taining 𝜆 = 5, it was still possible to obtain good results under this condition for data 

simulated using 𝛼 = 0.5 or 𝛼 =
1

𝐾
 for the 3-topic model. 

The performance of 𝐶𝑆̅̅̅̅  decreased when LDA estimated the parameters using 𝛼 =
50

𝐾
 &  𝛽 = 𝑓𝑟𝑒𝑒, particularly for corpora containing average document lengths of 5 

words. On average, 𝐶𝑆̅̅̅̅   misidentify the simulated topic model in about 85.3% (sd = 

11.7%) of the replications for corpora with 𝜆 = 5. The effect of 𝛼 =
50

𝐾
 &  𝛽 =

𝑓𝑟𝑒𝑒 decreased, however, for corpora with average document lengths of more than 20 

words. 

Similar to 𝐶𝑆̅̅̅̅ , the accuracy of  𝐽𝑆𝐷̅̅ ̅̅ ̅̅  was influenced by the average answer length when 

LDA was estimated using the same 𝛼  value to generate and estimate the parameters. 

On average, 𝐽𝑆𝐷̅̅ ̅̅ ̅ performed poorly for model selection as  𝐽𝑆𝐷̅̅ ̅̅ ̅̅  misidentified the sim-

ulated topic model in about 70% of the replications for corpora with average document 

lengths shorter than 200 words. However, when LDA was estimated using 𝛼 =
1

𝐾
 &  𝛽 = 1, the performance of 𝐽𝑆𝐷̅̅ ̅̅ ̅ for model selection improved to 59.2% (sd = 

17.7%) of the replications for corpora with 𝜆 = 50. The utility of 𝐽𝑆𝐷̅̅ ̅̅ ̅ in selecting the 

simulated topic model also varied across average document lengths for LDA models 

estimated using 𝛼 =
50

𝐾
 &  𝛽 = 𝑓𝑟𝑒𝑒. In this case, 𝐽𝑆𝐷̅̅ ̅̅ ̅ appeared to be accurate for 

model selection for corpora with 𝜆 = 100 and 𝜆 = 200 as, on average, 𝐽𝑆𝐷̅̅ ̅̅ ̅ correctly 

identified the topic structure in 65.2% (sd = 32.7%) and 94.5% (sd = 5.81%) of the 

replications. 
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Discussion 

LDA has primarily been used for exploratory analysis of large corpora (e.g., thousands 

of documents containing a relatively large number of unique words). Efforts to use 

LDA with classroom measurement data have been promising and have been shown to 

provide useful information about examinees’ thinking as reflected in their responses 

to CR items (Cardozo-Gaibisso et al., 2019; Wheeler, Raczynski, et al., 2022). It also 

has been useful in identifying students’ misconceptions (Shin et al., 2019). Further, it 

has enabled researchers to augment the estimates of ability obtained using traditional 

psychometric models for analyzing students’ answers to CR items (Wheeler, Wang, 

et al., 2022). 

Although LDA results are promising, studies of the accuracy of methods for selecting 

the best-fitting LDA model do not yet appear to have been reported. In this context, 

data sets from CR tests often consist of smaller numbers of documents, fewer unique 

words, and smaller vocabularies than those under which this method was developed. 

In this study, therefore, the focus was on investigating. Results from this study sug-

gested that the recovery of the topics did not seem to rely upon the tested condition or 

the estimation method. Rather, results were consistent with previous studies indicating 

that the 𝛽  values do not influence the estimates of the topics (Mardones-Segovia et 

al., 2022; Syed & Spruit, 2018). On the other hand, the recovery of the topic propor-

tions does appear to depend on the average answer length, the set of hyperparameters, 

and the estimation conditions. Particularly, the results showed that the recovery of the 

topic proportions was lower for corpora with average document lengths of 5 and 20 

words. 

These results were more evident when VEM was used to estimate the 𝛼  (i.e., 
50

𝐾
) hy-

perparameter. Although the average answer length did affect recovery of topic pro-

portions, when the set of hyperparameters was 𝛼 = 0.5 &  𝛽 = 0.05, both the Gibbs 

and VEM algorithms were able to accurately recover the topic proportion even with 

short answers and small numbers of documents and unique words. 

This study also suggested that the accuracy of the model selection indices was influ-

enced to a greater degree by the average answer length, the estimation method, the set 

of hyperparameters, and the number of topics. Overall, perplexity 5-CV, 𝐶𝑆̅̅̅̅ , 

𝐽𝑆𝐷̅̅ ̅̅ ̅ tended to be less accurate for model selection for corpora with average document 

lengths of 5 and 20 words. These results were consistent with previous evidence that 

showed that short average answer lengths might not have sufficient word co-occur-

rences to detect the topic structure (e.g., Chen et al., 2016; Hu et al., 2009). 

Additionally, the results suggested that the selection of the sets of hyperparameters 

affected the performance of the model selection indices for corpora containing aver-

age document lengths of 5 and 20 words. For example, perplexity 5-CV, 𝐶𝑆̅̅̅̅ , 𝐽𝑆𝐷̅̅ ̅̅ ̅ did 

provide useful and accurate information for model selection for the shortest average 

document length for LDA models estimated using the Gibbs sampling with 
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hyperparameters 𝛼 = 0.5 &  𝛽 = 0.05. The accuracy of those model selection indices 

was lower, however, when VEM was used to estimate the parameters using the default 

hyperparameter in the R package topicmodels (i.e., 𝛼 =
50

𝐾
). 

These results may suggest that although the 𝛽  values do not impact the estimates for 

the topics, they appear to influence the performance of the model selection indices, as 

using a different 𝛽  value to estimate the LDA models decreased the overall accuracy 

of the model selection indices. Similarly, these results may imply that 𝛼  values also 

appeared to influence the accuracy for model selection as the hyperparameters pro-

posed by Griffiths and Steyvers (2004) were not useful for detecting the simulated 

topic model for corpora with average document lengths of 5 and 20 words. Therefore, 

the hyperparameters for the topics and the topic proportions appeared to be relevant 

for model selection purposes. It is important to mention that the influence of the set 

of hyperparameters tended to decrease for average document lengths of at least 50 

words. 

The results of this study provided useful information about the accuracy of model 

selection indices for detecting the best-fitting topic structure for topic modeling of CR 

answers in which small numbers of topics, small numbers of unique words, or shorter 

answer lengths are typical. The performance of model selection indices appeared to 

depend mainly on the average document length. The longer the average answer length, 

the better the accuracy of perplexity 5-CV, 𝐶𝑆̅̅̅̅ , 𝐽𝑆𝐷̅̅ ̅̅ ̅ for detecting the best topic struc-

ture. Evidence was also provided regarding the accuracy of Gibbs sampling and VEM 

as estimation algorithms. Results suggest that both the Gibbs sampling and VEM 

seemed to be accurate algorithms for estimating the latent topic structure. Gibbs sam-

pling appeared to be better, in general, for corpora containing average document 

lengths of 5 and 20 words. 

Overall, the results suggested that researchers and practitioners applying LDA to cor-

pora of 200 or 300 documents, including short answers (e.g., 5 words or a single line), 

should carefully analyze the results as the data might not contain sufficient infor-

mation to estimate the topics and topic proportions accurately. Further, although per-

plexity 5-CV and 𝐶𝑆̅̅̅̅  using Gibbs sampling tended to be more useful for model selec-

tion under those conditions, their variability was high. An important consideration is 

that as the corpus of documents increased, the model selection indices appeared to 

improve their performance for short answers to CR items. Additionally, the LDA es-

timates and the model selection indices were more accurate for answers to CR items 

that contained at least 50 words. Therefore, researchers and practitioners should con-

sider the average answer lengths when applying LDA models to answers to CR class-

room assessments. In addition to providing evidence for the performance of the three 

model selection methods presented in this study, R code is provided in the Appendix 

so that future empirical studies that apply LDA can investigate which model selection 

method is best for their corpora. 

Although the results of this study are limited to the conditions evaluated, this research 

provides evidence about which model selection indices performed best for model 
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selection in LDA models in conditions that are typical in classroom assessments. Fu-

ture studies might investigate the accuracy of other model selection indices using sim-

ilar, or different corpora sizes as the ones presented in this study. Additionally, due to 

students’ answers to CR items being focused on the prompts, topics may be more 

related than in less constrained kinds of text. Therefore, empirical evidence would be 

useful to evaluate 𝐶𝑆̅̅̅̅  and 𝐽𝑆𝐷̅̅ ̅̅ ̅ in these conditions. 
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