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Abstract: 
The present study presents Bayesian confirmatory factor analyses of data from an extensive 
computer intelligence test battery used in the applied field of assessment in Switzerland. Bayes-
ian confirmatory factor analysis allows to constrain the variability and distribution of model 
parameters according to theoretical expectations using priors. Posterior distributions of the 
model parameters are then obtained by means of a Bayesian estimation procedure. A large sam-
ple of 4,677 participants completed the test battery comprising 21 different tasks. Factors for 
crystallized intelligence, fluid intelligence, memory, and basic skills/clerical speed were ob-
tained. The latter factor is different from speed-factors in several other tests as it encompasses 
speeded performance on moderately complex tasks. Three types of models were compared: for 
one type, only the expected salient loadings were freely estimated, and all cross-loadings were 
fixed to zero (i.e., independent clusters) whereas for the other two types of models normally 
distributed priors with a zero mean were defined. The latter two types were again altered re-
garding the amount of defined prior variance. Results show that defining substantial prior var-
iances for the cross-loadings in Bayesian confirmatory factor analysis allow to overcome limi-
tations of the independent clusters model. In order to estimate individual scores for the factors, 
mean plausible values were computed. However, the inter-correlations of the mean plausible-
values substantially overestimated the true correlations of the factors. To improve discriminant 
validity of individual score estimates, it was therefore proposed to compute correlation-preserv-
ing mean plausible values. The findings can be applied to derive estimates for factorial scoring 
of a test battery, especially if cross loadings of subtests must be expected. 
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Introduction 

Tests for the assessment of cognitive abilities (i.e., intelligence) are widely used in the 
applied field, for example, in the context of personnel selection, for clarifying assess-
ments in the setting of clinical psychology and school psychology, and for the large-
scale investigation of academic achievement. While there are short tests for the as-
sessment of general mental ability, larger test batteries allow for the distinction of 
several of the broad dimensions of intelligence. Since Horn and Cattell (1966) and 
Carroll (1993), the Cattell-Horn-Carroll (CHC; McGrew, 2009) theory is often used 
as a frame of reference, although other models of intelligence are sometimes also dis-
cussed (Guilford, 1988; Guttman & Levy, 1991; Süß & Beauducel, 2015). Fluid in-
telligence/fluid reasoning (gf) and crystallized intelligence/comprehension-
knowledge (gc) are among the most prominent general factors of the CHC model, 
although a clear representation of these factors also depends on methodological spec-
ifications (Carroll, 1995; Lang, Kersting, & Beauducel, 2016). This is not surprising 
as –since the early work of Spearman (1904)– there was a close relationship between 
different forms of multivariate analysis and the resulting models of intelligence.  

Besides the effect of methodological specifications and multivariate analysis on mod-
els of intelligence, there is also an effect of task sampling on model results. A model 
of systematic sampling and classification of intelligence measures has been proposed 
by Guttman and Levy (1991). However, task sampling also occurs in applied settings 
where the fit of the tasks to demands of the job or a specific degree program is im-
portant. In these contexts, typically test development does not follow a systematic 
combination of task processes and content. Rather, when tests are developed in the 
applied field, task sampling is commonly based on the demands of the setting of its 
application. For example, the Scholastic Aptitude Test (SAT) has a clear focus on 
school achievement. This perspective was so dominant that the conceptual relation-
ship between the SAT and cognitive abilities was neglected by test developers. Alt-
hough cognitive abilities may be seen as a foundation of academic achievement (ac-
cordingly, a substantial empirical relationship of the SAT with intelligence has been 
noted; Frey, 2019; Frey & Detterman, 2004), the SAT was not developed for the as-
sessment of intelligence and its tasks were sampled to the demands of the academic 
setting. In contrast, other tests developed for the applied field, like the Woodcock-
Johnson IV Full Test Battery (Dombrowski, McGill, & Canivez, 2018) were explicitly 
related to a model of intelligence. Relating a test battery for the assessment of cogni-
tive abilities not only to the demands from applied settings but also to the dimensions 
from an intelligence model allows for an improved understanding of the meaning and 
relevance of the test scores. In addition, the theoretical classification of the tasks also 
contributes significantly to validation. If test performance can be shown to represent 
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indicators of established ability constructs, the empirical evidence obtained in other 
studies for the validity of these constructs can be used as an argument for the test in 
question (i.e., in terms of validity generalization). Construct-based validity generali-
zation may allow to relate the constructs measured by a given test battery to empirical 
findings on criterion validity of intelligence that have been obtained, for example, in 
the meta-analyses by Lang, Kersting, Hülsheger and Lang (2010),  Salgado et al. 
(2003), Schmidt and Hunter (1998) and Sackett, Zhang, Berry and Lievens, (2021). 
Even if data on the test battery itself were not part of a corresponding meta-analysis, 
the test might be classified into the nomological network of abilities due to the con-
struct explanation. This would allow for a construct-based validity generalization as 
it is encouraged by the DIN 33430 (DIN, 2016), a German quality standard. 

By scoring a test battery developed according to practical demands in terms of estab-
lished dimensions of intelligence, theory-based expectations may be derived for the 
test scores and a systematic investigation of construct validity of the test may be fos-
tered. To explore the possibility to score a test battery from an applied setting accord-
ing to the state-of-the-art of intelligence research (i.e., by means of factorial scoring), 
the present analyses were based on a Multicheck® test battery for economy/business 
and administration. The tasks of the Multicheck® test battery were gained on the basis 
of requirement analyses. Practitioners were asked which skills are important for train-
ing and work. The test items are intended to simulate real-life requirements, which 
fosters a high degree of face validity. For the following analyses, we reviewed these 
tasks, which were initially developed to represent practical requirements, and hypoth-
esized which established constructs these tasks could be assigned to. We assume that 
the tasks can be attributed to the constructs (1) gf, (2) gc, (3) basic skills/clerical speed 
and (4) memory. Note that Schmitz and Wilhelm (2019) convincingly argued that 
clerical speed has meanwhile the status of a broad ability factor in hierarchical models 
of intelligence (see also Carroll, 1993). In order to emphasize the relevance of the 
factor for routine work in the office and administration, we use the term ‘basic 
skills/clerical speed’ in the following.  

However, when tasks are developed for applied settings, they will not necessarily rep-
resent a pronounced simple structure, with single substantial loadings of each task on 
only one factor. It is likely that several cross-loadings occur when factor analyses of 
such task batteries are performed. In this way, large task batteries pose a challenge for 
factor analysis because the models have to follow theoretical expectations while the 
variables are expected to deviate from simple structure. Although confirmatory factor 
analysis would allow for a specification of loadings according to theoretical expecta-
tions, the multiple cross-loadings may result in extensive specification searches lead-
ing to inconsistent models and capitalization on chance (MacCallum, Roznowski, & 
Necowitz, 1992). To overcome this problem, Bayesian confirmatory factor analysis 
(BCFA) may be used instead of other forms of confirmatory factor analysis, as it al-
lows for the specification of loadings according to theoretical expectations as well as 
the specification of the degree of variability of multiple cross-loadings. BCFA has 
been proposed in the context of Bayesian structural equation modeling (Muthén & 
Asparouhov, 2012), has been shown to identify population-loadings well (Xiao, Liu, 
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& Hau, 2019), and has meanwhile been applied in settings where complex loading 
patterns were expected (Weide, Scheuble, & Beauducel, 2021). A description of the 
technical details of BCFA in Mplus can be found in Asparouhov and Muthén (2010b). 
BCFA is based on a Markov Chain Monte Carlo (MCMC) algorithm and on splitting 
of the model parameters into groups (Gibbs sampler). Mplus defaults or optionally the 
user defines a prior distribution of parameters according to some expectations. If there 
is no clear expectation a flat distribution around zero is expected (non-informative 
prior). If a parameter is fixed (maximal specific expectation), an extremely small prior 
variance is used. The posterior distribution of each group of model parameters is gen-
erated from the conditional distribution of the remaining model parameters, the orig-
inal data, and the prior distribution. At the end of the iterative sequence, posterior 
distributions of the parameters are constructed from the priors and the data according 
to the Bayes theorem.  

While expected salient loadings will be freely estimated in BCFA, the size of non-
salient loadings can be controlled by means of the prior variance when the mean prior 
is zero. A small prior variance will result in smaller cross-loadings and larger prior-
variance will allow for larger cross-loadings (i.e., larger variation of the cross-load-
ings around zero). It has been recommended to try out models with different prior 
variance (Asparouhov, Muthén, & Morin, 2015). Hence, BCFA models without prior 
variance and models with different prior variances of cross-loadings will be compared 
in the present study. Comparing these models will give an account of the relevance of 
cross-loadings which could help to choose a final model that can be used for additional 
scoring of the Multicheck® test battery in the course of further development. As 
BCFA allows for the specification of theoretical expectations as well as multiple 
cross-loadings it is suitable for the investigation of large test batteries that were de-
veloped in applied settings and hence were not strictly designed to follow a given 
dimensional structure. However, as an alternative to the specification of non-zero 
prior variances for cross-loadings in BCFA, it would have been possible to specify 
inequality constraints for the cross-loadings. Inequality constraints, i.e., interval re-
strictions (e.g., LISREL, Jöreskog, & Sörbom, 2018) of cross-loadings (e.g., between 
-.30 and .30) can be specified in the context of maximum-likelihood estimation (Rind-
skopf, 2012). However, the cross-loadings cannot exceed the interval limits in this 
approach, which could be a problem, if there is no theoretical justification for a spe-
cific limit. A theoretical justification for a specific interval limit, e.g., why to use .30 
instead of .35, could be impossible. Moreover, for parameters lying on the boundary 
of the parameter space of interval restrictions, the test statistic becomes a mixture of 
²-distributions, whereas otherwise, it remains a ²-distribution (Savalei & Kolenikov, 
2008). For these reasons, the BCFA approach based on restricted prior variances of 
cross-loadings is preferred over interval restrictions of cross-loadings in the present 
context. Therefore, the first aim of the present study is the investigation of theoretical 
expectations in a complex test battery that was developed in applied settings using 
BCFA.  

Moreover, mean plausible values have been proposed as a method to compute scores 
for BCFA factors (Asparouhov & Muthén, 2010a). It has been noted that mean 



Disentangling intelligence factors 7 

plausible values and the best linear factor score predictor are nearly identical when 
the number of imputations and sample size is large (Beauducel & Hilger, 2022a). 
However, this implies that mean plausible values are not correlation-preserving, that 
is, that the inter-correlations of mean plausible values for BCFA factors are not the 
same as the inter-correlations of the BCFA factors themselves. This issue has already 
been discussed in the context of exploratory factor analysis and correlation-preserving 
factor scores have been proposed to overcome this issue (e.g., McDonald, 1981). Ac-
cordingly, it has been suggested to transform mean plausible values resulting from 
BCFA into correlation-preserving mean plausible values (Beauducel & Hilger, 
2022b). Note that correlation-preserving mean plausible values have the same inter-
correlations as the BCFA factors. As empirical research on this issue is lacking, the 
second aim of the present study is the investigation of the difference between the 
BCFA factor inter-correlations and the inter-correlations of the corresponding mean 
plausible values. It is of special interest to perform these analyses with data from in-
telligence tasks because a substantial amount of common variance and substantial fac-
tor inter-correlations can be expected in this context. 

To sum up, BCFA is a suitable tool for the investigation of a theoretically expected 
factor structure in task settings with high factorial complexity as well as for the con-
struction of scores for the intended factors in a specific test battery. As the possibility 
to define prior variances for cross-loadings is an essential difference between BCFA 
and other forms of confirmatory factor analysis, the first aim of the present study is a 
BCFA analysis of a version of the Multicheck® test battery by means of models with-
out prior variance, with small prior variance, and with substantial prior variance. 
Thereby, it is possible to investigate whether BCFA with prior variance of cross-load-
ings allows for the identification of intelligence factors that have been established by 
previous research (e.g., Carroll, 1993) in a large test battery for the assessment of 
cognitive abilities used in applied settings. The second aim of the study is to compare 
the inter-correlations of the mean plausible-values with the inter-correlations of the 
BCFA factors. If the inter-correlations of the mean plausible values are substantially 
different from the inter-correlations of the BCFA factors, this indicates that correla-
tion-preserving mean plausible values could be a valuable alternative. 

 

 

Method 

Participants 

A sample of 4,677 German-speaking participants (Swiss residents; 2,340 females; 
age: M = 15.63, SD = 2.54 years) completed the Multicheck® computer-test battery 
(version “Economy and Administration”) in order to get feedback on their aptitude for 
jobs in the context of vocational training in the sector of economy/business and ad-
ministration (e.g., merchant).  
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Procedure 

When they wish to apply for a training position (i.e., a job in the context of their voca-
tional training), candidates for apprenticeships in Switzerland may be encouraged by the 
institution to submit their feedbacks from a Multicheck® assessment. The assessment 
was supervised and proctored in designated venues and took about 3.5 hours to com-
plete. Participation was voluntary and participants could withdraw from participation at 
any time without any disadvantage, although an incomplete data set led to less mean-
ingful (i.e., diminished) results in the individual feedback (as missing entries are set to 
zero in the scoring). The participants accept that their data are used for the requested 
feedback and for improvement of the test battery. Note that the participants were free to 
use the feedback for their job applications, but the assessment was not a part of a specific 
job selection procedure (as the test feedbacks belong to participants’ property). 

 

Measures 

The 21 tasks of the test battery, their reliabilities in the total sample, and expected 
salient loadings are presented in Table 1. All included tasks were performance tasks 
in that correct and incorrect responses were possible. As an exception, the situational 
judgment tests for the assessment of social skills are scored gradually from 0 to 3 for 
each item. A short description of the tasks can be found in the Supplement. Cronbach’s 
Alpha of the tasks was very diverse.  

A classification of the tasks as marker variables for intelligence factors according to 
task content can be found in the right column of Table 1. Note that besides a rather 
clear classification of vocabulary- and knowledge-based tasks to gc, of reasoning-
tasks to gf, and the classification of memory tasks to memory (M), a factor combining 
basic skills and clerical speed (BS) was expected. Tasks for the measurement of con-
centration and speeded choices of responses were expected to load on this factor. 
Moreover, social skills tasks were expected to load on this factor because they were 
based on situational judgement tests designed as simulations of practical situations at 
the workplace with rich demands to information processing and basic problem solving 
(Krumm et al., 2015).  

 

Statistical Analysis 

As the sample size is large enough, a random split of the sample according to odd and 
even case-numbers into two equal subsamples (subsample 1, n = 2338; subsample 2, 
n = 2339) was performed in order to investigate the robustness of the results. Age was 
similar in the subsamples (subsample 1: M = 15.61, SD = 2.45; subsample 2: M = 
15.64, SD = 2.64; t4675 = -0.46, p = .32) as was the gender distribution (subsample 1: 
49.4 % females; subsample 2: 50.7 % females). The BCFA analyses were performed 
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separately for each subsample with Mplus 8.4 (Muthén & Muthén, 2019). Factor var-
iances were fixed to one and expected salient loadings were freely estimated. In Mod-
els 1 (for subsample 1) and 2 (for subsample 2) only the expected salient loadings 
were freely estimated and all cross-loadings were fixed to zero. According to As-
parouhov and Muthén (2017), a fixed-to-zero loading can be treated as a loading with 
a prior mean of zero and a prior variance of zero. Moreover, the output does not pro-
vide parameter estimates for the fixed to zero loadings. This implies that the fixed 
zero loadings were not adapted to the data in Models 1 and 2.  

 

Table 1. Test battery, their reliabilities, and expected salient loadings 

 

 
Cronbach´s Al-
pha 

expected salient load-
ing 

grammar (German) .87 gc 
orthography (German) .94 gc 

text comprehension (German) .83 gc 

vocabulary (German) .64 gc 

computer knowledgea .82 gc 

grammar (English) .86 gc 

communication (English) .87 gc 

vocabulary (English) .51 gc 

figural analogies .82 gf 
verbal analogies .43 gf 

arithmetic .78 gf 

numerical estimation .78 gf 

relate information .83 gf 

figural memory .60 M 

verbal memory .72 M 

compare numbers .96 BS 
social skills – customer service .34 BS 

organizational skills .96 BS 

social skills – team .40 BS 

social skills – error handling .26 BS 

concentrationb - BS 

Note. BS = basic skills/clerical speed; M = memory; athe complete test also contains items of digital com-
petences, but here, only knowledge items were used; bonly the sum of correct responses was available; 
internal consistencies for the tasks were computed as standardized Cronbach Alpha coefficients with miss-
ing values set to zero in the item scoring; missing values occur when participants do not respond to an item 
during the test execution or when time runs out. 
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In the remaining models, non-salient loadings were estimated with normally distrib-
uted priors with a zero mean for gc, gf and BS. An overview of the parameter speci-
fications in the different models is given in Table A1 (see Appendix). As there are 
only two variables for the measurement of M, this factor could only be estimated using 
an equality constraint on the respective expected salient loadings. To improve the ro-
bustness of the factor which is only based on two variables with expected salient load-
ings, non-salient loadings on M remained fixed to zero (no variability of cross-load-
ings on M was allowed). In each subsample two models with prior variance were per-
formed, one with a prior variance of 2 = 0.01 (Models 3 and 4), one with 2 = 0.05 
(Models 5 and 6). We followed the recommendation of Zitzmann and Hecht (2019) 
to use a potential scale reduction (PSR) smaller than 1.05. Therefore, we did not use 
the Mplus default for BCONVERGENCE of 0.05, but a BCONVERGENCE of 0.005 
resulting in a PSR of 1.005. We ensured convergence by allowing 400,000 iterations 
when necessary. Mean plausible values were computed from 500 imputations, which 
according to Beauducel and Hilger (2022a) should be sufficiently large to approach 
optimal determinacy of mean plausible values. As the tasks, not the single items, were 
analyzed, all measured variables were specified as continuous variables. The further 
model specifications can be found in the Mplus input files example for Model 5 (see 
Appendix). 

Starting from the idea that latent variables can be regarded as observed variables with 
missing values for all observations plausible values are computed like missing values 
(Asparouhov & Muthén, 2010a, 2022). The values are generated using MCMC simu-
lation. For each plausible value, 100 MCMC iterations were performed which allows 
to obtain approximately the posterior distribution of the respective factor. In the pre-
sent study, the mean across 500 plausible values was computed for each factor. The 
mean plausible values as well as their correlation-preserving version (Beauducel & 
Hilger, 2022b) were computed. 

 

 

Results 

The fit of the models in the two subsamples is given in Table 2. Obviously, the models 
without cross-loadings have a low comparative fit index (CFI), although two corre-
lated errors were specified, one for text comprehension (German) and verbal memory, 
and another for arithmetic and numerical estimation (see Figure 1 for the conceptual 
diagram). As the fit of these models falls far below conventional criteria (Hu & Bent-
ler, 1999), further improvements of model fit without allowing for non-zero cross-
loadings would result in a substantial number of correlated errors.  
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Table 2. Model fit and RMSD of the completely standardized loadings.    
 
       RMSDb 

Model sub-
sample 

prior 
² 

pppa BIC RMSEA CFI Model 3 Model 4 Model 5 Model 6 

1 1 - .000 239882.65 .065 .854 - - - - 

2 2 - .000 238915.79 .067 .850 - - - - 

3 1 0.01 .000 239477.30 .052 .912 - .035 .069 .072 

4 2 0.01 .000 238522.62 .056 .903 .026 - .070 .054 

5 1 0.05 .000 239271.05 .048 .928 .056 .067 - .042 

6 2 0.05 .000 238285.73 .052 .921 .076 .073 .044 - 

Note. a²-based posterior predictor p-value, BIC = Bayesian Information Criterion; RMSEA = root mean 
square error of approximation; CFI = comparative fit index; RMSD = root mean square difference; bthe 
RMSD for completely standardized loadings is given in the upper-triangle, and the RMSD for factor inter-
correlations is given in the lower triangle. 

 

Model fit was moderate but acceptable for the models allowing for cross-loadings (see 
Table 2). For the first subsample, models fit slightly better than for the second sub-
sample. The Bayesian Information Criterium (BIC) is considerably smaller for the 
models with a prior ² of 0.05 (Model 5 and 6), indicating that these models have an 
improved fit compared to the models based on a prior ² of 0.01. As cross-loadings 
may result in some instability of the loading pattern, the root mean square difference 
(RMSD) between the completely standardized loadings of the models with non-zero 
prior variance was computed in order to evaluate the similarity of results across the 
two subsamples for each Model.  
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Figure 1. Conceptual diagram of BCFA freely estimated model parameters (without 
priors; graGe = grammar (German), ortGe = orthography (German), texGe = text com-
prehension (German), vocGe = vocabulary (German), comkno = computer 
knowledge, graEn = grammar (English), comEn = communication (English), vocEn 
= vocabulary (English), comnum = compare numbers, figana = figural analogies, 
verana = verbal analogies, arith = arithmetic, numest = numerical estimation, figmem 
= figural memory, vermem = verbal memory, sosk = social skills, orgsk = organiza-
tional skills – customer service, soskte = social skills – team, sosker = social skills – 
error handling, relinf = relate information, concen = concentration. 
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Although the RMSD indicates that the loading patterns of the models based on ² = 
0.01 are a bit more similar across subsamples (.026 for loadings, .035 for inter-corre-
lations) than the models based on ² = 0.05, these models are still rather similar across 
subsamples (.044 for loadings, .042 for inter-correlations, see Table 2). As Model 5 
and 6 have a superior fit, further results are reported for these models. 

The loadings and factor inter-correlations for Model 5 and Model 6 are given in Table 
3. Although there are some differences between the loadings of the two models, the 
loading differences did not alter the meaning of the factors (i.e., the expected salient 
loadings remained on the expected factor for both sub-samples). Overall, the cross-
loadings of variables representing gc on gf and BS were larger than the cross-loadings 
of variables representing gf. Although the models allowing for substantial cross-load-
ings have a superior fit, the size of the cross-loadings is not extreme. Only the cross-
loading of text comprehension (German) on the BS factor was greater .30. This indi-
cates that the cross-loadings do not modify the general meaning of the factors. The 
substantial factor inter-correlations indicate that a general factor representing the com-
mon variance of all factors is conceivable. The factor inter-correlations of Model 5 
and 6 were similar. In both subsamples, the inter-correlations of the mean plausible 
values were considerably larger than the inter-correlations of the factors. Especially 
the correlation of the mean plausible values for M with the mean plausible values for 
gf and BS was extremely large. Previous research indicates that mean plausible values 
are similar to regression factor scores and it has been shown in simulation-studies that 
mean plausible values as well as regression factor scores may result in an over-esti-
mation of the factor inter-correlations (Beauducel & Hilger, 2022a). In line with these 
previous findings, inter-correlations of mean plausible values were larger than the fac-
tor inter-correlations in the present study (see Table 3). In contrast, the inter-correla-
tions of correlation-preserving mean plausible values correspond exactly to the factor 
inter-correlations of the BCFA factors presented in Table 3. Therefore, correlation-
preserving mean plausible values result in unbiased loadings in second-order factor 
analysis. 
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Table 3. Model 5/Model 6 (subsample 1/2, prior ² = 0.05), completely standardized 
loadings and factor inter-correlations 

 gc gf M BS 

Grammar (German) .23 / .28 .21 / .17 - .22 / .24 

orthography (German) .40 / .34 .10 / .12 - .04 / .07 

text comprehens. (Ger) .16 / .21 .18 / .16 - .34 / .33 

vocabulary (German) .21 / .29 .24 / .20  - .17 / .19 

computer knowledgea .20 / .21 .29 / .19 - .14 / .22 

grammar (English) .94 / .94 -.09 /-.07 - -.15 /-.19 

communication (English) .69 / .76 -.11 /-.09 - .07 / .01 

vocabulary (English) .75 / .78 .05 / .00 - -.11 /-.10 

figural analogies .06 / .08 .45 / .37 - .10 / .16 

verbal analogies .09 / .10 .48 / .41 - .09 / .16 

arithmetic .00 / .03 .76 / .69 - .00 / .06 

numerical estimation .02 /-.02 .71 / .72 - -.15 /-.14 

relate information .06 / .13 .39 / .39 - .16 / .14 

figural memory - - .52 / .49 -.08 /-.07 

verbal memory - - .50 / .51 .18 / .20 

compare numbers -.02 / .00 -.01 /-.04 - .22 / .24 

social skills – customer 
service 

-.06 /-.02 -.16 /-.27 - .56 / .60 

organizational skills -.06 /-.04 .06 / .06 - .43 / .47 

social skills – team -.03 /-.02 -.12 /-.14 - .60 / .58 

social skills – error  -.04 /-.01 -.22 /-.28 - .58 / .57 

concentration .01 / .00 .04 / .05 - .38 / .37 

factor inter-correlations 

gf .49 / .50    

M .54 / .59 .69 / .61   

BS .59 / .62 .74 / .76 .74 / .68  

inter-correlations of mean plausible values 

gf .72 / .70    

M .76 / .76 .87 / .79   

BS .77 / .78 .88 / .91 .91 / .84  
Note. Parameters of Model 5 are before the slash, parameters of Model 6 are behind the slash; gc = crystal-
lized intelligence, gf = fluid intelligence, BS = basic skills/clerical speed, M = memory; cross-loadings of 
tasks on M were fixed to zero; expected salient loadings and cross-loadings of an absolute size greater than 
.30 are marked in boldface. 
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The g-factor loadings resulting from BCFA of mean plausible values and BCFA of 
correlation-preserving mean plausible values are given in Table 4, along with and the 
corresponding model fit. Whereas a one-factor model fits perfectly for the mean plau-
sible values, the fit is less pronounced for the correlation-preserving mean plausible 
values. Thus, the over-estimated factor-intercorrelations of the mean plausible values 
(see Table 3) might suggest that there is not much more than g-variance in the data. 
However, the RMSD between the inter-correlations reproduced from the g-loadings 
and the original factor inter-correlations (the original factor inter-correlations are pre-
sented in Table 3) show that the mean plausible values result in g-loadings that do not 
represent the original factor inter-correlations (as indicated by high RMSD in Table 
4). In contrast, the g-loadings based on correlation-preserving mean plausible values 
represent the original factor inter-correlations rather well (as indicated by low RMSD 
in Table 4). 

 

Table 4. Factor-loadings of g based on BCFA of mean plausible values versus 
correlation-preserving mean plausible values 
 

 mean plausible values correlation-preserving  

mean plausible values 

 Subsample 1 Subsample 2 Subsample 1 Subsample 2 

gc .80 .80 .64 .68 

gf .92 .92 .82 .82 

M .95 .86 .83 .76 

BS .96 .98 .90 .92 

pppa .054 .000 .000 .000 

BIC 16586.56 17386.69 21634.01 21885.22 

RMSEA .046 .204 .069 .141 

CFI .999 .979 .996 .979 

RMSDb .190 .169 .016 .040 

Note. a²-based posterior predictor p-value, BIC = Bayesian Information Criterion; RMSEA = root mean 
square error of approximation; CFI = comparative fit index; bRMSD = root mean square difference between 
the inter-correlations reproduced by the g-loadings and the inter-correlations of the first-order factors. 
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Discussion 

The main results of the present study can be summarized as follows: BCFA allows for 
the identification of factors representing fluid intelligence, crystallized intelligence, 
memory, and basic skills/clerical speed in a complex test battery that has been devel-
oped for the assessment of cognitive abilities in applied settings. The factor basic 
skills/clerical speed comprises speeded performance on moderately complex routine 
tasks and is therefore different from speed factors that are typically based on very 
simple speed tasks. This factor combines aspects of Carroll’s (1993) broad speediness 
factor with broad processing speed. It represents several aspects of the cognitive speed 
domain (Wilhelm & Kyllonen, 2021) and might therefore be of special interest in the 
prediction of job performance (Sackett, Zedeck, & Fogli, 1988). In order to investigate 
the effect of non-zero cross-loadings, models without cross-loadings, models based 
on small prior variance of cross-loadings, and models based on moderate prior vari-
ance of cross-loadings were investigated. The models without cross-loadings had an 
inacceptable fit, although the factor inter-correlations were freely estimated and alt-
hough two correlated errors were specified. Models based on small prior variance of 
cross-loadings had an improved fit, and models based on larger prior variance of 
cross-loadings had an even superior fit. This indicates that models without cross-load-
ings, sometimes termed ‘independent clusters models’, yield suboptimal representa-
tions of the factor structure of the test battery. This corroborates findings of simulation 
studies that BCFA may allow to overcome limitations of the independent clusters 
model (Xiao, et al., 2019). The patterns of expected salient loadings and cross-load-
ings as well as the factor inter-correlations were similar across a random split of the 
total sample into large subsamples. This indicates that the test battery allows for a 
robust measurement of intelligence factors that have been established in several stud-
ies (e.g., Carroll, 1993).  

Overall, the factor-intercorrelations were rather large, which indicates that the test 
battery measures a relevant amount of general intelligence. Subsequent analyses based 
on mean plausible values indicate that the g-factor captures nearly all the measured 
variance. However, the analysis also shows that this results from an overestimation of 
the factor inter-correlations when the analysis is based on mean plausible values. In 
contrast, analyses based on correlation-preserving mean plausible values indicate that 
the amount of g-variance is substantial, but g does not represent the total common 
variance. Accordingly, we recommend to use correlation-preserving mean plausible 
values instead of mean plausible values for hierarchical factor analysis. In any case, 
the substantial amount of g-variance indicates that the test battery might have similar 
criterion validity as the tests that have been included in the meta-analyses by Salgado 
et al. (2003), Schmidt and Hunter (1998) and Sackett et al. (2021). 

Moreover, it could also be that a systematic separation of content variance for verbal, 
numerical and figural intelligence, as it has been proposed by Guttman and Levy 
(1991), Guilford (1988), and Jäger (1984), might allow for an improvement of the 
discriminant validity of the factors. In order to establish a content facet for verbal, 
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numerical, and figural intelligence, additional marker variables (e.g., for numerical 
memory) should be added to the test battery. The possibility of a faceted model might 
be investigated in future studies.  

As noted above, the true factor inter-correlations were overestimated by the mean 
plausible values. The overestimation of the inter-correlations was most pronounced 
for correlations with the memory factor. As this factor was only represented by two 
variables, it could be that the weak representation of the factor caused this effect. Be-
cause of the overestimation of the factor inter-correlations, mean plausible values can-
not be recommended as an alternative to conventional scale scores for this test battery. 
However, the present results indicate that correlation-preserving mean plausible val-
ues may allow for an improvement of discriminant validity of scores representing the 
BCFA factors. As outlined in the introduction, computing correlation-preserving 
mean plausible values is a method to derive score estimates of the latent variables or 
factors resulting in path coefficients corresponding exactly to the path coefficients 
estimated by means of BCFA (Beauducel & Hilger, 2022b). Hence, they may be seen 
as especially useful when applying the results of BCFA to the factorial scoring of the 
test battery at hand. Each factor of the BCFA model can be represented by correspond-
ing correlation-preserving mean plausible values (e.g., crystallized intelligence or 
fluid intelligence). So, as an important application of the present findings, the pre-
sented method can be used to derive estimates for a factorial scoring of a test battery, 
especially if the test was developed to meet practical demands so that cross-loadings 
are likely to occur. 
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Appendix 

Table A1. Models and parameter specifications 
 
Model factor variances factor inter-

correlations 
expected sali-
ent loading 

cross-loadingsa 

1 fixed (piors:  = 1.00,  
² = 0.00) 

freeb freeb fixed  (piors:  = 0.00,  
² = 0.00) 

2 fixed (piors:  = 1.00,  
² = 0.00) 

freeb freeb fixed  (piors:  = 0.00,  
² = 0.00) 

3 fixed (piors:  = 1.00,  
² = 0.00) 

freeb freeb free (piors:  = 0.00,  
² = 0.01) 

4 fixed (piors:  = 1.00,  
² = 0.00) 

freeb freeb free (piors:  = 0.00,  
² = 0.01) 

5 fixed (piors:  = 1.00,  
² = 0.00) 

freeb freeb free (piors:  = 0.00,  
² = 0.05) 

6 fixed (piors:  = 1.00,  
² = 0.00) 

freeb freeb free (piors:  = 0.00,  
² = 0.05) 

Note. aNo variability of cross-loadings on the factor M was allowed, the indications refer to the factors gc, 
gf, and BS; bfree parameters have a prior mean of zero and a very large prior variance.  

 

 

Example for Mplus syntax 

 
Title: Model 5: Bayesian CFA for subsample1 with prior variance of 0.05; 
  DATA: File is 
  Multicheck_Wirtschaft_und_Administration_Mplus_labels_subsample1_scales.csv; 
 
  LISTWISE=Off; 
 
  VARIABLE: 
  NAMES ARE 
  Pbn 
  age 
  GramGE 
  OrthGE 
  TextGE 
  VocGE 
  ComKno 
  ComDenk 
  GraEN 
  ComEN 
  VocEN 
  FRGram 
  FRKomm 
  FRWort 
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  SoSk 
  Zahlver1 
  Compnum 
  FigAna 
  VerbAna 
  Calc 
  NumEst 
  FigMem 
  VerbMem 
  OrgSk 
  SoSkTe 
  SoSkEr 
  RelInf 
  Concen 
  ; 
   missing = all (999999); 
 
  USEVARIABLES 
  GramGE 
  OrthGE 
  TextGE 
  VocGE 
  ComKno 
  GraEN 
  ComEN 
  VocEN 
  SoSk 
  Compnum 
  FigAna 
  VerbAna 
  Calc 
  NumEst 
  FigMem 
  VerbMem 
  OrgSk 
  SoSkTe 
  SoSkEr 
  RelInf 
  Concen  ; 
 
  ANALYSIS: 
  ESTIMATOR = BAYES; 
  BCONVERGENCE = 0.005; 
  BITERATIONS = 400000; 
 
  MODEL: 
 
  gc by GramGE* OrthGE TextGE VocGE ComKno GraEN ComEN VocEN ; 
  gc@1; 
 
  gf by FigAna* VerbAna Calc NumEst RelInf  GraEN Compnum; 
  gf@1; 
 
  gc by Compnum* (gcCompn); 
  gc by FigAna*  (gcFigAn); 
  gc by VerbAna* (gcVerbAn); 
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  gc by Calc*    (gcCalc); 
  gc by NumEst*  (gcNumEst); 
  gc by RelInf*  (gcRelInf); 
 
  gf by GramGE*  (gfGramGE); 
  gf by OrthGE*  (gfOrthGE); 
  gf by TextGE*  (gfTextGE); 
  gf by VocGE*   (gfVocGE); 
  gf by ComKno*  (gfComKno); 
  gf by ComEN*   (gfComEN); 
  gf by VocEN*   (gfVocEN); 
 
  M by FigMem* (1); 
  M by VerbMem* (1); 
  M@1; 
 
  BS by SoSk* OrgSk SoSkTe SoSkEr Concen ; 
  BS@1; 
 
 
  gf with BS (gfBS); 
  gc with BS (gcBS); 
  M  with BS (MBS); 
 
 
  gc by SoSk*   (gcSoSk); 
  gc by OrgSk*  (gcOrgSk); 
  gc by SoSkTe* (gcSoSkTe); 
  gc by SoSkEr* (gcSoSkEr); 
  gc by Concen* (gcConcen); 
 
  gf by SoSk*   (gfSoSk); 
  gf by OrgSk*  (gfOrgSk); 
  gf by SoSkTe* (gfSoSkTe); 
  gf by SoSkEr* (gfSoSkEr); 
  gf by Concen* (gfConcen); 
 
  BS by FigAna* (BSFigAn); 
  BS by VerbAna*(BSVerbAn); 
  BS by Calc*   (BSCalc); 
  BS by NumEst* (BSNumEst); 
  BS by RelInf* (BSRelInf); 
 
  BS by GramGE* (BSGramGE); 
  BS by OrthGE* (BSOrthGE); 
  BS by TextGE* (BSTextGE); 
  BS by VocGE*  (BSVocGE); 
  BS by ComKno* (BSComKno); 
  BS by GraEN*  (BSGraEN); 
  BS by ComEN*  (BSComEN); 
  BS by VocEN*  (BSVocEN); 
  BS by Compnum*(BSCompn); 
 
  BS by FigMem* (BSFigMem); 
  BS by VerbMem*(BSVerMem); 
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  ! Two correlated errors: 
  VerbMem with TextGE (VMTeGE); 
  NumEst with Calc (NumCal); 
 
 
  MODEL PRIORS: 
  gcCompn~N(0,0.05); 
  gcFigAn~N(0,0.05); 
  gcVerbAn~N(0,0.05); 
  gcCalc~N(0,0.05); 
  gcNumEst~N(0,0.05); 
  gcRelInf~N(0,0.05); 
 
  gfGramGE~N(0,0.05); 
  gfOrthGE~N(0,0.05); 
  gfTextGE~N(0,0.05); 
  gfVocGE~N(0,0.05); 
  gfComKno~N(0,0.05); 
  gfComEN~N(0,0.05); 
  gfVocEN~N(0,0.05); 
 
  gcSoSk~N(0,0.05); 
  gcOrgSk~N(0,0.05); 
  gcSoSkTe~N(0,0.05); 
  gcSoSkEr~N(0,0.05); 
  gcConcen~N(0,0.05); 
 
  gfSoSk~N(0,0.05); 
  gfOrgSk~N(0,0.05); 
  gfSoSkTe~N(0,0.05); 
  gfSoSkEr~N(0,0.05); 
  gfConcen~N(0,0.05); 
 
  BSFigAn~N(0,0.05); 
  BSVerbAn~N(0,0.05); 
  BSCalc~N(0,0.05); 
  BSNumEst~N(0,0.05); 
  BSRelInf~N(0,0.05); 
 
  BSGramGE~N(0,0.05); 
  BSOrthGE~N(0,0.05); 
  BSTextGE~N(0,0.05); 
  BSVocGE~N(0,0.05); 
  BSComKno~N(0,0.05); 
  BSGraEN~N(0,0.05); 
  BSComEN~N(0,0.05); 
  BSVocEN~N(0,0.05); 
  BSCompn~N(0,0.05); 
 
  BSFigMem~N(0,0.05); 
  BSVerMem~N(0,0.05); 
 
  gfBS~N(0,0.05); 
  gcBS~N(0,0.05); 
  MBS~N(0,0.05); 
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  VMTeGE~N(0,0.05); 
  NumCal~N(0,0.05); 
 
  OUTPUT: 
  STANDARDIZED (STDYX); Tech8; 
  SAVEDATA: 
  FILE IS Model5_Bayesian_CFA_subsample1_prior_variance_SD05_plausible_values.txt; 
  SAVE = FSCORES (500); 
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Supplement 1: Description of tasks of the test battery 

Table S1. Descriptions with number of items and time available for tasks of the test 
battery 
 

Task Description Items Time/Minutes 

Grammar (Ger-
man) 

In a series of cloze tests (German texts) the 
missing word or the missing word ending 
must be entered correctly, if necessary.  

20 5 

Orthography (Ger-
man) 

In German texts misspelled words must be 
marked and corrected as a free input. 

15 5 

Text comprehen-
sion (German) 

Different questions are asked about a text 
and the correct statements must be marked. 

17 8 

Vocabulary (Ger-
man) 

Synonyms or antonyms of German words 
must be selected from a list. 

14 4 

Grammar (English) In a series of cloze tests (English texts) the 
missing word or the missing word ending 
must be entered correctly, if necessary.  

15 5 

Vocabulary (Eng-
lish) 

Synonyms or antonyms of English words 
must be selected from a list. 

12 6 

Communication 
(English) 

In various English conversations, questions 
or answers fitting the context must be se-
lected from different options. 

20 5 

Computer 
knowledge 

Questions concerning the use of computers 
and digital aids must be answered by select-
ing answer options. 

12 15 

Figural analogies Laws must be inferred from figurative mate-
rial and applied to find the correct solution. 

14 10 

Verbal analogies Laws must be inferred from verbal material 
and applied to find the correct solution. 

13 7 

Arithmetic Various mathematical problems presented 
as text or in tabular form must be solved with 
the aid of a calculator and note material. 

15 15 

Numerical estima-
tion 

Solutions to arithmetic problems must be es-
timated by mathematical reasoning (without 
the aid of a calculator and note material). 

17 7.5 

Compare numbers Two series of numbers must be compared for 
each item, and it must be indicated whether 
they are identical or not. 

72 4 

Figural memory 

(learning / retrieval) 

A series of pictograms is shown (learning 
phase). After an interference phase, picto-
grams are shown again, and it must be stated 
whether they occurred in the learning phase 
or not. 

20 1.5 / 2 
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Task Description Items Time/Minutes 

Verbal memory 

(learning / retrieval) 

A text is presented (learning phase). After an 
interference phase, the correct answers to 
questions about this text must be given by se-
lection of answer options. 

17 3 / 4 

Concentration The coordinates of a target in a grid must be 
entered as correctly and quickly as possible. 

120 3 

Relate information This group of tasks is about linking infor-
mation from a text and a table and answering 
different questions with the help of this infor-
mation. 

25 10 

Organizational 
skills 

In this planning task, several scheduling re-
quests must be coordinated, considering cer-
tain conditions. 

23 10 

Social skills – cus-
tomer service 

In this situational judgment tests, the task is 
to accommodate and process customer con-
cerns in a professional manner. 

10 No constraint 

Social skills – team This situational judgment test is about coor-
dinating jobs in a team and responding to 
challenges in a goal-oriented manner. 

12 No constraint 

Social skills –error 
handling 

This situational judgment test is about deal-
ing appropriately with errors and criticism and 
solving problems. 

10 No constraint 

Note. Items = number of scored items; Time = minutes available during the test execution (time constraint 
for solving the scored items) 
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Supplement 2: Illustration of task types - extract 

This supplement serves to illustrate the task types, the instructions and the user 
interface for the different tasks. Stimuli are taken from the original preparation items. 
Each task begins with a rather simple preparation item without time constraint. 
Participants have to give the correct answer to the preparation item or choose to have 
the correct answer presented to them in order to be able to continue to the start of the 
scored tasks in the subtest. Note that there is only one preparation item used for all 
three situational judgment test szenarios for the measurement of social skills, as they 
all contain the same instrcutions and the same user interface. Also, note that typically 
the scored tasks are not as easy to solve as the those in the preparation items. Table 
S2 gives an overview of the content of the figures. 

 

Table S2. Content of figures in this supplement. 
 

Task Figure 
Grammar (German) Figure S1 
Orthography (German) Figure S2 
Text comprehension (German) Figure S3 
Vocabulary (German) Figure S4 
Grammar (English) Figure S5 
Vocabulary (English) Figure S6 
Communication (English) Figure S7 
Computer knowledge Figure S8 
Figural analogies Figure S9 
Verbal analogies Figure S10 
Arithmetic Figure S11 
Numerical estimation Figure S12 
Compare numbers Figure S13 
Figural memory (learning phase) Figure S14 
Figural memory (retrieval phase) Figure S15 
Verbal memory (learning phase) Figure S16 
Verbal memory (retrieval phase) Figure S17 
Concentration Figure S18 
Relate information Figure S19 
Organizational skills Figure S20 
Social skills  Figure S21 

Note. The complete materials (including Figures 2 to 21) are available on request from the corresponding 
author. 
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Figure S1. Grammar (German): simplified preparation item. Translation of 
instructions: “Write the appropriate word in the empty boxes. If something is already 
written in the gaps, you have to complement the word if necessary. Sometimes the 
sentence is already correct. In that case, just put a check mark in the "correct" box, 
and you can only write one word at the most.” 
 




